@article{TSG_2003-2004__22__83_0,
author = {Borrelli, Vincent},
title = {The {Gluck} and {Ziller} problem with the euclidean metric},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {83--92},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {22},
year = {2003-2004},
mrnumber = {2136137},
zbl = {1073.53081},
language = {en},
url = {https://www.numdam.org/item/TSG_2003-2004__22__83_0/}
}
TY - JOUR AU - Borrelli, Vincent TI - The Gluck and Ziller problem with the euclidean metric JO - Séminaire de théorie spectrale et géométrie PY - 2003-2004 SP - 83 EP - 92 VL - 22 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/item/TSG_2003-2004__22__83_0/ LA - en ID - TSG_2003-2004__22__83_0 ER -
Borrelli, Vincent. The Gluck and Ziller problem with the euclidean metric. Séminaire de théorie spectrale et géométrie, Volume 22 (2003-2004), pp. 83-92. https://www.numdam.org/item/TSG_2003-2004__22__83_0/
[1] AND , A critical radius for unit Hopf vector fields on spheres, Preprint. | MR
[2] , Riemannian submanifolds, Handbook of Differential Geometry, Vol 1, 2000, Elsevier. | Zbl | MR
[3] Volume and Energy of vector fields on spheres. A survey, Differential Geometry,Valencia 2001,167-178,World Sci. Publishing, River Edge,NJ2002. | Zbl | MR
[4] Unit vector fields that are critical points of the volume and the energy : characterization and examples, to appear in Complex, contact and symmetric spaces : papers in honour of Lieven Vanheche. Progress in Math. Birkhauser. | Zbl | MR
[5] AND , Second variation of Volume and Energy of vector fields. Stabilit of Hopf vector fields, Math. Ann. 320 ( 2001), 531-545. | Zbl | MR
[6] AND , On the volume of a unit vector field on the three-sphere, Comment Math. Helv. 61 ( 1986), 177-192. | Zbl | MR





