@article{TSG_1999-2000__18__125_0,
author = {Aubry, Erwann},
title = {Th\'eor\`eme de la sph\`ere},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {125--155},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {18},
year = {1999-2000},
mrnumber = {1812217},
zbl = {1078.53518},
language = {fr},
url = {https://www.numdam.org/item/TSG_1999-2000__18__125_0/}
}
Aubry, Erwann. Théorème de la sphère. Séminaire de théorie spectrale et géométrie, Volume 18 (1999-2000), pp. 125-155. https://www.numdam.org/item/TSG_1999-2000__18__125_0/
[1] , , On complete manifolds with nonnegative Ricci curvature, Journ. A.M.S., 3 ( 1990), 355-374. | Zbl | MR
[2] , Metrics of positive Ricci curvature with large diameter, Manuscripta Math., 68 ( 1990) 405-415. | Zbl | MR | EuDML
[3] , Riemannian geometry : a modern introduction, Cambridge Tracts in Mathematics, Cambridge university press, 1993. | Zbl | MR
[4] , , On the structure of space with Ricci curvature bounded below, J. Diff. Geom., 46 ( 1997), 404. | Zbl | MR
[5] , , Lower bounds on Ricci curvature and the almost rigidity of werped products, Ann. of Math., 144 ( 1996), 189-237. | Zbl | MR
[6] , Eigenvalue comparison theorems and its geometric application, Math. Z., 143 ( 1975), 289-297. | Zbl | MR | EuDML
[7] , , Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math 28 ( 1975), 333-354. | Zbl | MR
[8] , Shape of manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 175. | Zbl | MR
[9] , Large manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 193. | Zbl | MR
[10] , Ricci curvature and volume convergence, Annals of Maths, 145 ( 1997), 477. | Zbl | MR
[11] , Volumes, courbure de Ricci et convergence des variétés, Sém. Bourbaki, 835 ( 1997-1998) | Numdam
[12] , Variété dont le spectre ressemble à celui de la sphère, Astérisque, 80 ( 1980), 33. | Zbl | MR | Numdam
[13] , (rédigé par J. Lafontaine et P. Pansu); Structures métriques sur les variétés riemanniennes, Textes Math., n° 1, 1981. | Zbl | MR
[14] , Un nouveau résultat de pincement de la première valeur propre du Laplacien et preuve de la conjecture du diamètre pincé, Annales Institut Fourier, 43 ( 1993), 843. | Zbl | MR | Numdam
[15] , Certain condition for a riemannian manifold to be isometric to a sphere, J. Math. Soc. Japan, 14 ( 1962), 333-340. | Zbl | MR
[16] , On eigenvalue pinching in positive Ricci curvature, Preprint. | Zbl
[17] , Recent developments in sphere theorems, Proc. of Symp. in Pure Math., 54 ( 1993), Part 3. | Zbl | MR





