@article{SPS_2002__36__383_0,
author = {Jacod, Jean},
title = {On processes with conditional independent increments and stable convergence in law},
journal = {S\'eminaire de probabilit\'es},
pages = {383--401},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {36},
year = {2002},
mrnumber = {1971599},
zbl = {1034.60035},
language = {en},
url = {https://www.numdam.org/item/SPS_2002__36__383_0/}
}
TY - JOUR AU - Jacod, Jean TI - On processes with conditional independent increments and stable convergence in law JO - Séminaire de probabilités PY - 2002 SP - 383 EP - 401 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_2002__36__383_0/ LA - en ID - SPS_2002__36__383_0 ER -
Jacod, Jean. On processes with conditional independent increments and stable convergence in law. Séminaire de probabilités, Volume 36 (2002), pp. 383-401. https://www.numdam.org/item/SPS_2002__36__383_0/
[1] and . (1978): On mixing and stability of limit theorems. Ann. Probab. 6 325-331. | Zbl | MR
[2] (1975): The characterization of stochastic processes with conditionally independent increments. Litovk. Math. Sb. 15, 53-60. | Zbl | MR
[3] and (1981): Weak and strong solutions of stochastic differential equations; existence and stability. In Stochastic Integrals, D. Williams ed., Proc. LMS Symp., Lect. Notes in Math. 851, 169-212, Springer Verlag: Berlin. | Zbl | MR
[4] and (1987): Limit Theorems for Stochastic Processes. Springer-Verlag: Berlin. | Zbl | MR
[5] (1997): On continuous conditional Gaussian martingales and stable convergence in law. Séminaire Proba. XXXI, Lect. Notes in Math. 1655, 232-246, Springer Verlag: Berlin. | Numdam | Zbl | MR | EuDML
[6] , , (2001): About asymptotic error in discretization of processes. Prépublication du Laboratoire de probabilités et modèles aléatoires.
[7] (1993): A symmetry characterization of conditionally independent increment martingales. Barcelona Seminar on Stochastic Analysis 1991, Progr. Probab. 32, Birkhäuser, Basel. | Zbl | MR
[8] (1963): On stable sequences of events. Sankya Ser. A, 25, 293-302. | Zbl | MR
[9] (1983): Existence de solutions d'un problème de martingales. C.R.A.S. Paris, 297, 353-356. | Zbl | MR
[10] (1985): Solutions faibles d'équations différentielles stochastiques et problèmes de martingales. Thèse Univ. Rennes-1.






