@article{SPS_1999__33__1_0,
author = {Bena{\"\i}m, Michel},
title = {Dynamics of stochastic approximation algorithms},
journal = {S\'eminaire de probabilit\'es},
pages = {1--68},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {33},
year = {1999},
mrnumber = {1767993},
zbl = {0955.62085},
language = {en},
url = {https://www.numdam.org/item/SPS_1999__33__1_0/}
}
Benaïm, Michel. Dynamics of stochastic approximation algorithms. Séminaire de probabilités, Volume 33 (1999), pp. 1-68. https://www.numdam.org/item/SPS_1999__33__1_0/
(1993). The General Topology of Dynamical Systems. American Mathematical Society, Providence. | Zbl | MR
, , and (1983). A generalized urn problem and its applications. Cybernetics, 19:61-71. | Zbl
(1988). Self-reinforcing mechanisms in economics. In W, A. P., Arrow, K. J., and Pines, D., editors,The Economy as an Evolving Complex System, SFI Studies in the Sciences of Complexity. Addison-Wesley. | MR
(1996). A dynamical systems approach to stochastic approximations. SIAM Journal on Control and Optimization, 34:141-176. | Zbl | MR
(1997). Vertex reinforced random walks and a conjecture of Pemantle. The Annals of Probability, 25:361-392. | Zbl | MR
and (1994). Learning processes, mixed equilibria and dynamical systems arising from repeated games. Submitted.
and (1995a). Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1(1):1-16. | Zbl | MR
and (1995b). Dynamics of morse-smale urn processes. Ergodic Theory and Dynamical Systems, 15:1005-1030. | Zbl | MR
and (1996). Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dynam. Differential Equations, 8:141-176. | Zbl | MR
and (1997). Weak asymptotic pseudotrajectories for semiflows: Ergodic properties. Preprint.
, , and (1990). Stochastic Approximation and Adaptive Algorithms. Springer-Verlag, Berlin and New York. | Zbl | MR
(1975). Omega limit sets of Axiom A diffeomorphisms. J. Diff. Eq, 18:333-339. | Zbl | MR
(1996). Autour des pièges des algorithmes stochastiques. Thèse de Doctorat, Université de Marne-la-Vallée.
(1997). Some pathological traps for stochastic approximation. SIAM Journal on Control and Optimization. To Appear. | Zbl | MR
and (1996). Les algorithmes stochastique contournent ils les pièges. Annales de l'IHP, 32:395-427. | Zbl | MR | Numdam
(1978). Isolated invariant sets and the Morse index. CBMS Regional conference series in mathematics. American Mathematical Society, Providence. | Zbl | MR
(1996), General convergence results on stochastic approximation. IEEE trans. on automatic control, 41:1245-1255. | Zbl | MR
(1990). Méthodes Récursives Aléatoires. Masson. English Translation: Random Iterative Models, Springer Verlag 1997. | Zbl
(1996). Algorithmes Stochastiques. Mathématiques et Applications. Springer-Verlag. | Zbl | MR
(1997). Cibles atteignables avec une probabilité positive d'après M. BENAIM. Unpublished manuscript.
and (1986). Markov Processes, Characterization and Convergence. John Wiley and Sons, Inc. | Zbl | MR
and (1994). Résaux de neurones: des méthodes connexionnistes d'apprentissage. Matapli, 37:31-48.
and (1996). Convergence of stochastic algorithms: From Kushner-Clark theorem to the lyapounov functional method. Adv. Appl. Prob, 28:1072-1094. | Zbl | MR
and (1997). Stochastic algorithm with non constant step: a.s. weak convergence of empirical measures. Preprint.
and (1993). Learning mixed equilibria. Games and Econom. Behav., 5:320-367. | Zbl | MR
and (1998). Theory of Learning in Games. MIT Press, Cambridge, MA. In Press. | Zbl | MR
(1964). Ordinary Differential Equationq. Wiley, New York. | Zbl | MR
, , and (1980). A strong law for some generalized urn processes. Annals of Probability, 8:214-226. | Zbl | MR
(1976). Differential Topology. Springer-Verlag, Berlin, New York, Heidelberg. | Zbl | MR
(1994). Asymptotic phase, shadowing and reaction-diffusion systems. In Differential equations, dynamical systems and control science, volume 152 of Lectures notes in pure and applied mathematics, pages 87-99. Marcel Dekker, New-York. | Zbl | MR
and (1988). Cohomology of chain recurrent sets. Ergodic Theory and Dynamical Systems, 8:73-80. | Zbl | MR
and (1995). Learning dynamics in games with stochastic perturbations. Games and Econom. Behav., 11:330-363. | Zbl | MR
and (1952). Stochastic estimation of the maximum of a regression function. Ann. Math. Statis, 23:462-466. | Zbl | MR
and (1978). Stochastic Approximation for Constrained and Unconstrained Systems. Springer-Verlag, Berlin and New York. | Zbl | MR
and (1997). Stochastic Approximation Algorithms and Applications. Springer-Verlag, New York. | Zbl | MR
(1977). Analysis of recursive stochastic algorithms. IEEE Trans. Automat. Control., AC-22:551-575. | Zbl | MR
(1986). System Identification Theory for the User. Prentice Hall, Englewood Cliffs, NJ. | Zbl
and (1983). Theory and Practice of Recursive Identification. MIT Press, Cambridge, MA. | Zbl | MR
(1987). Ergodic Theory and Differentiable Dynamics. Springer-Verlag, New York. | Zbl | MR
and (1987). Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant. Probability Theory and Related Fields, 74:403-428. | Zbl | MR
(1975). Topology a first course. Prentice Hall. | Zbl | MR
and (1976). Stochastic Approximation and Recursive Estimation. Translation of Math. Monographs. American Mathematical Society, Providence.
(1990). Nonconvergence to unstable points in urn models and stochastic approximations. Annals of Probability, 18:698-712. | Zbl | MR
(1992). Vertex reinforced random walk. Probability Theory and Related Fields, 92:117-136. | Zbl | MR
and (1951). A stochastic approximation method. Ann. Math. Statis, 22:400-407. | Zbl | MR
. (1977). Stability theorems and hyperbolicity in dynamical systems. Rocky Journal of Mathematics, 7:425-434. | Zbl | MR
(1995). Introduction to the Theory of Dynamical Systems. Studies in Advances Mathematics. CRC Press, Boca Raton. | MR
(1997). Expansion rates and Lyapunov exponents. Discrete and Conts. Dynam. Sys., 3:433-438. | Zbl | MR
(1987). Global Stability of Dynamical Systems. Springer-Verlag, Berlin, New York, Heidelberg. | Zbl | MR
(1993). Probability Theory. An analytic view. Cambridge University Press. | Zbl | MR
(1992). Artificial Neural Networks: Approximation and Learning Theory. Blackwell, Cambridge, Massachussets. | MR





