@article{SEDP_1989-1990____A5_0,
author = {Shubin, M. A.},
title = {Weak {Bloch} property and weight estimates for elliptic operators},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:5},
pages = {1--20},
year = {1989-1990},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {1073180},
zbl = {0716.35052},
language = {en},
url = {https://www.numdam.org/item/SEDP_1989-1990____A5_0/}
}
TY - JOUR AU - Shubin, M. A. TI - Weak Bloch property and weight estimates for elliptic operators JO - Séminaire Goulaouic-Schwartz N1 - talk:5 PY - 1989-1990 SP - 1 EP - 20 PB - Ecole Polytechnique, Centre de Mathématiques UR - https://www.numdam.org/item/SEDP_1989-1990____A5_0/ LA - en ID - SEDP_1989-1990____A5_0 ER -
%0 Journal Article %A Shubin, M. A. %T Weak Bloch property and weight estimates for elliptic operators %J Séminaire Goulaouic-Schwartz %Z talk:5 %D 1989-1990 %P 1-20 %I Ecole Polytechnique, Centre de Mathématiques %U https://www.numdam.org/item/SEDP_1989-1990____A5_0/ %G en %F SEDP_1989-1990____A5_0
Shubin, M. A. Weak Bloch property and weight estimates for elliptic operators. Séminaire Goulaouic-Schwartz (1989-1990), Exposé no. 5, 20 p.. https://www.numdam.org/item/SEDP_1989-1990____A5_0/
[C-G-T] , , Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds. J. Diff. Geom. 17 (1982), 15-53. | Zbl | MR
[C-F-K-S] , , , Schrödinger operators. Springer, Berlin e.a., 1987.
[G] Curvature, diameter and Betti numbers. Comment Math. Helvetici 56 (1981), 179-195. | Zbl | MR
[H] The analysis of linear partial differential operators. Berlin e.a., Springer-Verlag, vol. 1,2 (1983), vol. 3,4 (1985).
[K-O-S] , , Periodic Schrödinger opera tors on a manifold. Forum Math. 1 (1989), 69-79. | Zbl | MR
[Kor 1] Lp-theory of elliptic differential operators with bounded coefhcients. Vestnik Moskovskogo Universiteta, Ser. I Math. Mech. 1988, N°4, 98-100 (in Russian). | Zbl | MR
[Kor 2] Elliptic operators on manifolds of bounded geometry. Thesis, Moscow State University, 1987 (in Russian)
[M-S] , Properly supported uniform pseudo-differential operators on unimodular Lie groups. Trudy Sem. Petrovskogo 11 (1986), 74-97; Functional calculus of pseudo-differential operators on unimodular Lie groups. Trudy Sem. Petrovskogo 12 (1987), 164-200 (in Russian). | Zbl
[Sch] On the behaviour of the Schrödinger equation. Mat. Sbornik 42 (1957), 273-286 (in Russian). | Zbl
[S] Pseudodifference operators and their Green's functions. Math. USSR Izvestiya 26 (1986), N3, 605-622. | Zbl | MR
[R] An index theorem on open manifolds. I. II. J. Diff. Geom. 27 (1988), 87-113, 115-136. | Zbl | MR






