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INDEPENDENCE NUMBER AND CONNECTIVITY FOR FRACTIONAL
(𝑎, 𝑏, 𝑘)-CRITICAL COVERED GRAPHS

Sizhong Zhou1,*, Jiancheng Wu1 and Hongxia Liu2

Abstract. A graph 𝐺 is a fractional (𝑎, 𝑏, 𝑘)-critical covered graph if 𝐺−𝑈 is a fractional [𝑎, 𝑏]-covered
graph for every 𝑈 ⊆ 𝑉 (𝐺) with |𝑈 | = 𝑘, which is first defined by (Zhou, Xu and Sun, Inf. Process. Lett.
152 (2019) 105838). Furthermore, they derived a degree condition for a graph to be a fractional (𝑎, 𝑏, 𝑘)-
critical covered graph. In this paper, we gain an independence number and connectivity condition for a
graph to be a fractional (𝑎, 𝑏, 𝑘)-critical covered graph and verify that 𝐺 is a fractional (𝑎, 𝑏, 𝑘)-critical
covered graph if

𝜅(𝐺) ≥ max
{︁2𝑏(𝑎 + 1)(𝑏 + 1) + 4𝑏𝑘 + 5

4𝑏
,
(𝑎 + 1)2𝛼(𝐺) + 4𝑏𝑘 + 5

4𝑏

}︁
.
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1. Introduction

The fractional factor problems in graphs can be regarded as a relaxation of the well-known cardinality
matching problems. In a data transmission net work, the feasible assignment of data packets can be seen as a
fractional flow problem, that is, the existence of a fractional [𝑎, 𝑏]-factor [10].

The existence of a fractional (𝑎, 𝑏, 𝑘)-critical covered graph plays a key role in the data transmission of
networks. If a channel is assigned, and some nodes are damaged in the process of the data transmission at
the moment, the possibility of transmission between data is characterized by whether the corresponding graph
of the network is a fractional (𝑎, 𝑏, 𝑘)-critical covered graph [21]. The independence number and connectivity
conditions are often applied to measure the vulnerability and robustness of a network, which are two important
parameters in network design and data transmission.

We discuss finite graphs which have neither multiple edges nor loops. Let 𝐺 be a graph with vertex set 𝑉 (𝐺)
and edge set 𝐸(𝐺). Let 𝑋 and 𝑌 be disjoint vertex subsets of 𝐺. The number of edges of 𝐺 joining 𝑋 to
𝑌 is denoted by 𝑒𝐺(𝑋, 𝑌 ). We denote by 𝐺[𝑋] and 𝐺 − 𝑋 the subgraph of 𝐺 induced by 𝑋 and 𝑉 (𝐺) ∖ 𝑋,
respectively. A vertex subset 𝑋 of 𝐺 is called independent if 𝐺[𝑋] does not contain edges. We use 𝛼(𝐺) and 𝜅(𝐺)
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to denote the independence number and the connectivity of 𝐺, respectively. For 𝑥 ∈ 𝑉 (𝐺), we denote by 𝑑𝐺(𝑥)
the degree of 𝑥 in 𝐺 and by 𝑁𝐺(𝑥) the set of vertices adjacent to 𝑥 in 𝐺. We set 𝛿(𝐺) = min{𝑑𝐺(𝑥) : 𝑥 ∈ 𝑉 (𝐺)}
and 𝑁𝐺[𝑥] = 𝑁𝐺(𝑥) ∪ {𝑥}. For any 𝑋 ⊆ 𝑉 (𝐺), we write 𝑑𝐺(𝑋) =

∑︀
𝑥∈𝑋

𝑑𝐺(𝑥). We denote by 𝐾𝑛 the complete

graph of order 𝑛.
Let 𝑎 ≤ 𝑏 be two positive integers. A spanning subgraph 𝐹 of 𝐺 is called an [𝑎, 𝑏]-factor if 𝑎 ≤ 𝑑𝐹 (𝑥) ≤ 𝑏 for

every 𝑥 ∈ 𝑉 (𝐺). Let ℎ : 𝐸(𝐺) → [0, 1] be a function. If 𝑎 ≤
∑︀
𝑒∋𝑥

ℎ(𝑒) ≤ 𝑏 holds for all 𝑥 ∈ 𝑉 (𝐺), then we call

a graph 𝐹 with vertex set 𝑉 (𝐺) and edge set 𝐸ℎ a fractional [𝑎, 𝑏]-factor of 𝐺 with indicator function ℎ, where
𝐸ℎ = {𝑒 : 𝑒 ∈ 𝐸(𝐺), ℎ(𝑒) > 0}. A fractional [𝑎, 𝑏]-factor of 𝐺 is called a fractional 𝑟-factor of 𝐺 if 𝑎 = 𝑏 = 𝑟. A
graph 𝐺 is called a fractional [𝑎, 𝑏]-covered graph if for any 𝑒 ∈ 𝐸(𝐺), 𝐺 admits a fractional [𝑎, 𝑏]-factor 𝐹 , with
indicator function ℎ𝐹 , such that ℎ𝐹 (𝑒) = 1. Bian and Zhou posed an independence number and connectivity
condition for the existence of fractional 𝑟-factors in graphs, which is a special case of a more general result by
Bian and Zhou [4].

Theorem 1.1. ([4]). Let 𝐺 be a graph, and 𝑟 ≥ 1 be an integer. Then 𝐺 possesses a fractional 𝑟-factor if

𝜅(𝐺) ≥ max
{︁ (𝑟 + 1)2

2
,

(𝑟 + 1)2𝛼(𝐺)
4𝑟

}︁
.

Some other results related to factors [1–3,12,14,16,19,20,22,23,25–27] and fractional factors [5–8,11,13,15,
17, 18, 24] of graphs were obtained by many authors. A graph 𝐺 is called a fractional (𝑎, 𝑏, 𝑘)-critical covered
graph if after removing any 𝑘 vertices of 𝐺, the resulting graph of 𝐺 is a fractional [𝑎, 𝑏]-covered graph, which
is first defined by Zhou, Xu and Sun [21]. Furthermore, Zhou, Xu and Sun [21] obtained a degree condition for
graphs being fractional (𝑎, 𝑏, 𝑘)-critical covered.

Theorem 1.2. ([21]). Let 𝑎, 𝑏 and 𝑘 be three integers with 𝑎 ≥ 1, 𝑏 ≥ max{2, 𝑎} and 𝑘 ≥ 0, and let 𝐺 be a
graph of order 𝑛 with 𝑛 ≥ (𝑎+𝑏)(𝑎+𝑏−1)+𝑏𝑘+3

𝑏 and 𝛿(𝐺) ≥ 𝑎 + 𝑘 + 1. Then 𝐺 is a fractional (𝑎, 𝑏, 𝑘)-critical
covered graph if

max{𝑑𝐺(𝑥), 𝑑𝐺(𝑦)} ≥ 𝑎𝑛 + 𝑏𝑘 + 2
𝑎 + 𝑏

for every pair of nonadjacent vertices 𝑥 and 𝑦 of 𝐺.

In this paper, we study the relationship between the independence number, connectivity and fractional
(𝑎, 𝑏, 𝑘)-critical covered graphs, and gain a new result on the existence of fractional (𝑎, 𝑏, 𝑘)-critical covered
graphs, which is an extension of Theorem 1.1.

Theorem 1.3. Let 𝑎, 𝑏 and 𝑘 be three integers with 𝑏 ≥ 𝑎 ≥ 1 and 𝑘 ≥ 0, and let 𝐺 be a graph. Then 𝐺 is a
fractional (𝑎, 𝑏, 𝑘)-critical covered graph if

𝜅(𝐺) ≥ max
{︁2𝑏(𝑎 + 1)(𝑏 + 1) + 4𝑏𝑘 + 5

4𝑏
,

(𝑎 + 1)2𝛼(𝐺) + 4𝑏𝑘 + 5
4𝑏

}︁
.

We immediately derive the following result from Theorem 1.3.

Corollary 1.4. Let 𝑎 and 𝑏 be integers with 𝑏 ≥ 𝑎 ≥ 1, and let 𝐺 be a graph. Then 𝐺 is a fractional [𝑎, 𝑏]-covered
graph if

𝜅(𝐺) ≥ max
{︁2𝑏(𝑎 + 1)(𝑏 + 1) + 5

4𝑏
,

(𝑎 + 1)2𝛼(𝐺) + 5
4𝑏

}︁
.
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If 𝑎 = 𝑏 = 𝑟 in Theorem 1.3, then we have the following corollary. Obviously, Corollary 1.5 is a generalization
of Theorem 1.1 by the definition of a fractional 𝑟-covered graph.

Corollary 1.5. Let 𝑟 be an integer with 𝑟 ≥ 1, and let 𝐺 be a graph. Then 𝐺 is a fractional 𝑟-covered graph if

𝜅(𝐺) ≥ max
{︁2𝑟(𝑟 + 1)2 + 5

4𝑟
,

(𝑟 + 1)2𝛼(𝐺) + 5
4𝑟

}︁
.

2. Proof of Theorem 3

We use the following lemma to verify Theorem 1.3.

Lemma 2.1. ([9]). Let 𝐺 be a graph, and let 𝑎, 𝑏 be two integers with 𝑏 ≥ 𝑎 ≥ 0. Then 𝐺 is a fractional
[𝑎, 𝑏]-covered graph if and only if for any vertex subset 𝑋 of 𝐺,

𝜃𝐺(𝑋, 𝑌 ) = 𝑏|𝑋|+ 𝑑𝐺−𝑋(𝑌 )− 𝑎|𝑌 | ≥ 𝜀(𝑋, 𝑌 )

where 𝑌 = {𝑦 : 𝑦 ∈ 𝑉 (𝐺) ∖𝑋, 𝑑𝐺−𝑋(𝑦) ≤ 𝑎} and 𝜀(𝑋, 𝑌 ) is defined by

𝜀(𝑋, 𝑌 ) =

⎧⎪⎨⎪⎩
2, 𝑖𝑓 𝑋 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡,
1, 𝑖𝑓 𝑋 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑗𝑜𝑖𝑛𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑉 (𝐺) ∖ (𝑋 ∪ 𝑌 ), 𝑜𝑟

𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑒 = 𝑥𝑦 𝑗𝑜𝑖𝑛𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌 𝑤𝑖𝑡ℎ 𝑑𝐺−𝑋(𝑦) = 𝑎 𝑓𝑜𝑟 𝑦 ∈ 𝑌,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Proof of Theorem 3. Let 𝑈 ⊆ 𝑉 (𝐺) with |𝑈 | = 𝑘, and let 𝐻 = 𝐺−𝑈 . It suffices to verify that 𝐻 is a fractional
[𝑎, 𝑏]-covered graph. We shall prove this by contradiction. Suppose that 𝐻 is not a fractional [𝑎, 𝑏]-covered graph.
Then using Lemma 2.1, we have

𝜃𝐻(𝑋, 𝑌 ) = 𝑏|𝑋|+ 𝑑𝐻−𝑋(𝑌 )− 𝑎|𝑌 | ≤ 𝜀(𝑋, 𝑌 )− 1 (2.1)

for some vertex subset 𝑋 of 𝐻 and 𝑌 = {𝑦 : 𝑦 ∈ 𝑉 (𝐻) ∖𝑋, 𝑑𝐻−𝑋(𝑦) ≤ 𝑎}.

Claim 2.2. 𝑌 ̸= ∅.

Proof. Let 𝑌 = ∅. Then by (2.1) and 𝜀(𝑋, ∅) ≤ |𝑋|, we get

𝜀(𝑋, ∅)− 1 ≥ 𝜃𝐻(𝑋, ∅) = 𝑏|𝑋| ≥ |𝑋| ≥ 𝜀(𝑋, ∅),

this is a contradiction. Claim 2.2 is proved. �

Claim 2.3. 𝑋 ̸= ∅.

Proof. Let 𝑋 = ∅. Then 𝜀(∅, 𝑌 ) = 0. Note that 𝛿(𝐻) = 𝛿(𝐺−𝑈) ≥ 𝛿(𝐺)−𝑘 ≥ 𝜅(𝐺)−𝑘 ≥ 2𝑏(𝑎+1)(𝑏+1)+4𝑏𝑘+5
4𝑏 −

𝑘 = (𝑎+1)(𝑏+1)
2 + 5

4𝑏 > 𝑎 + 1. Then using (2.1) and Claim 2.2 we obtain

−1 ≥ 𝜃𝐻(∅, 𝑌 ) = 𝑑𝐻(𝑌 )− 𝑎|𝑌 | ≥ (𝛿(𝐻)− 𝑎)|𝑌 |
> ((𝑎 + 1)− 𝑎)|𝑌 | = |𝑌 | ≥ 1,

which is a contradiction. We prove Claim 2.3. �



2538 S. ZHOU ET AL.

Since 𝑌 ̸= ∅ (by Claim 2.2), we take 𝑦1 ∈ 𝑌 such that 𝑦1 is the vertex with the minimum degree in 𝐻[𝑌 ].
We set 𝑁1 = 𝑁𝐻 [𝑦1]∩𝑌 and 𝑌1 = 𝑌 . If 𝑌 −

⋃︀
1≤𝑗<𝑖

𝑁𝑗 ̸= ∅ for 𝑖 ≥ 2, write 𝑌𝑖 = 𝑌 −
⋃︀

1≤𝑗<𝑖

𝑁𝑗 . Then take 𝑦𝑖 ∈ 𝑌𝑖

such that 𝑦𝑖 is the vertex with the minimum degree in 𝐻[𝑌𝑖], and 𝑁𝑖 = 𝑁𝐻 [𝑦𝑖]∩ 𝑌𝑖. We go on these procedures
until we arrive at the situation in which 𝑌𝑖 = ∅ for some 𝑖, say for 𝑖 = 𝑚 + 1. Then from the definition above
we see that {𝑦1, 𝑦2, · · · , 𝑦𝑚} is an independent set of 𝐻, and is also an independent set of 𝐺. Obviously, 𝑚 ≥ 1
by Claim 2.2.

If we write |𝑁𝑖| = 𝑛𝑖, then |𝑌 | =
∑︀

1≤𝑖≤𝑚

𝑛𝑖. We set 𝑊 = 𝑉 (𝐻) ∖ (𝑋 ∪ 𝑌 ) and 𝜅(𝐻 −𝑋) = 𝑡.

Claim 2.4. 𝑚 ̸= 1 or 𝑊 ̸= ∅.

Proof. Let 𝑚 = 1 and 𝑊 = ∅. Note that 𝑊 = ∅ is equivalent to saying that there is no vertex 𝑦 in 𝑉 (𝐻) ∖𝑋
such that 𝑑𝐻−𝑋(𝑦) > 𝑎. Then we easily see that

|𝑉 (𝐺)| = |𝑈 |+ |𝑋|+ 𝑛1 = 𝑘 + |𝑋|+ 𝑛1 > 𝜅(𝐺) ≥ 2𝑏(𝑎 + 1)(𝑏 + 1) + 4𝑏𝑘 + 5
4𝑏

,

namely,

|𝑋| > 2𝑏(𝑎 + 1)(𝑏 + 1) + 5
4𝑏

− 𝑛1. (2.2)

According to (2.1), (2.2), 𝜀(𝑋, 𝑌 ) ≤ 2 and the choice of 𝑦1, we get

1 ≥ 𝜀(𝑋, 𝑌 )− 1 ≥ 𝜃𝐻(𝑋, 𝑌 ) = 𝑏|𝑋|+ 𝑑𝐻−𝑋(𝑌 )− 𝑎|𝑌 |
= 𝑏|𝑋|+ 𝑛1(𝑛1 − 1)− 𝑎𝑛1

> 𝑏
(︁2𝑏(𝑎 + 1)(𝑏 + 1) + 5

4𝑏
− 𝑛1

)︁
+ 𝑛1(𝑛1 − 1)− 𝑎𝑛1

=
2𝑏(𝑎 + 1)(𝑏 + 1) + 5

4
+

(︁
𝑛1 −

𝑎 + 𝑏 + 1
2

)︁2

− (𝑎 + 𝑏 + 1)2

4

≥ 2𝑏(𝑎 + 1)(𝑏 + 1) + 5
4

− (𝑎 + 𝑏 + 1)2

4

=
𝑏2(2𝑎 + 1)− (𝑎 + 1)2 + 5

4

≥ 𝑎2(2𝑎 + 1)− (𝑎 + 1)2 + 5
4

=
𝑎(𝑎2 − 1) + 2

2
≥ 1,

which is a contradiction. We verify Claim 2.4. �

Claim 2.5. 𝑑𝐻−𝑋(𝑌 ) ≥
∑︀

1≤𝑖≤𝑚

𝑛𝑖(𝑛𝑖 − 1) + 𝑚𝑡
2 .

Proof. In terms of the choice of 𝑦𝑖, we derive∑︁
1≤𝑖≤𝑚

(
∑︁

𝑦∈𝑁𝑖

𝑑𝑌𝑖(𝑦)) ≥
∑︁

1≤𝑖≤𝑚

𝑛𝑖(𝑛𝑖 − 1). (2.3)

For the left-hand side of (2.3), an edge joining a vertex 𝑥 in 𝑁𝑖 and a vertex 𝑦 in 𝑁𝑗 (𝑖 < 𝑗) is counted only
once, namely, it is counted in 𝑑𝑌𝑖(𝑥) but not in 𝑑𝑌𝑗 (𝑦). The edges of type 𝑥𝑦 (𝑥 ∈ 𝑁𝑖 and 𝑦 ∈ 𝑁𝑗 , for 𝑖 < 𝑗) are
not counted on the RHS of (2.3). Hence, we admit

𝑑𝐻−𝑋(𝑌 ) ≥
∑︁

1≤𝑖≤𝑚

𝑛𝑖(𝑛𝑖 − 1) +
∑︁

1≤𝑖<𝑗≤𝑚

𝑒𝐻(𝑁𝑖, 𝑁𝑗) + 𝑒𝐻(𝑌, 𝑊 ). (2.4)
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In light of 𝜅(𝐻 −𝑋) = 𝑡 and Claim 2.4, we get

𝑒𝐻(𝑁𝑖,
⋃︁
𝑗 ̸=𝑖

𝑁𝑗) + 𝑒𝐻(𝑁𝑖, 𝑊 ) ≥ 𝑡 (2.5)

for every 𝑁𝑖 (1 ≤ 𝑖 ≤ 𝑚). Using (2.5), we obtain∑︁
1≤𝑖≤𝑚

(𝑒𝐻(𝑁𝑖,
⋃︁
𝑗 ̸=𝑖

𝑁𝑗) + 𝑒𝐻(𝑁𝑖, 𝑊 )) = 2
∑︁

1≤𝑖<𝑗≤𝑚

𝑒𝐻(𝑁𝑖, 𝑁𝑗) + 𝑒𝐻(𝑌, 𝑊 ) ≥ 𝑚𝑡.

We easily see that ∑︁
1≤𝑖<𝑗≤𝑚

𝑒𝐻(𝑁𝑖, 𝑁𝑗) + 𝑒𝐻(𝑌,𝑊 ) ≥ 𝑚𝑡

2
. (2.6)

It follows from (2.4) and (2.6) that

𝑑𝐻−𝑋(𝑌 ) ≥
∑︁

1≤𝑖≤𝑚

𝑛𝑖(𝑛𝑖 − 1) +
𝑚𝑡

2
·

We finish the proof of Claim 2.5. �
Note that |𝑌 | =

∑︀
1≤𝑖≤𝑚

𝑛𝑖. It follows from (2.1), 𝜀(𝑋, 𝑌 ) ≤ 2 and Claim 2.5 that

1 ≥ 𝜀(𝑋, 𝑌 )− 1 ≥ 𝜃𝐻(𝑋, 𝑌 ) = 𝑏|𝑋|+ 𝑑𝐻−𝑋(𝑌 )− 𝑎|𝑌 |

≥ 𝑏|𝑋|+
∑︁

1≤𝑖≤𝑚

𝑛𝑖(𝑛𝑖 − 1) +
𝑚𝑡

2
− 𝑎

∑︁
1≤𝑖≤𝑚

𝑛𝑖

= 𝑏|𝑋|+
∑︁

1≤𝑖≤𝑚

(︁(︁
𝑛𝑖 −

𝑎 + 1
2

)︁2

− (𝑎 + 1)2

4

)︁
+

𝑚𝑡

2

≥ 𝑏|𝑋| − 𝑚(𝑎 + 1)2

4
+

𝑚𝑡

2

= 𝑏|𝑋|+
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝑚,

namely,

1 ≥ 𝑏|𝑋|+
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝑚. (2.7)

Combining (2.7), Claim 2.3 and 𝑚 ≥ 1, we admit

1 ≥ 𝑏|𝑋|+
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝑚

≥ 𝑏 +
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝑚

≥ 1 +
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝑚,

which implies

𝑡

2
− (𝑎 + 1)2

4
≤ 0. (2.8)
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We easily see that 𝛼(𝐺) ≥ 𝛼(𝐺[𝑌 ]) = 𝛼(𝐻[𝑌 ]) ≥ 𝑚 and 𝜅(𝐺) ≤ 𝜅(𝐺 − 𝑈) + 𝑘 = 𝜅(𝐻) + 𝑘 ≤ 𝜅(𝐻 −
𝑋) + |𝑋| + 𝑘 = 𝑡 + |𝑋| + 𝑘. In light of 𝜅(𝐺) ≥ max

{︁
2𝑏(𝑎+1)(𝑏+1)+4𝑏𝑘+5

4𝑏 , (𝑎+1)2𝛼(𝐺)+4𝑏𝑘+5
4𝑏

}︁
, (2.7) and (2.8),

we derive

1 ≥ 𝑏|𝑋|+
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝑚

≥ 𝑏(𝜅(𝐺)− 𝑘 − 𝑡) +
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
𝛼(𝐺)

≥ 𝑏(𝜅(𝐺)− 𝑘 − 𝑡) +
(︁ 𝑡

2
− (𝑎 + 1)2

4

)︁
· 4𝑏𝜅(𝐺)− 4𝑏𝑘 − 5

(𝑎 + 1)2

=
5
4

+
(︁4𝑏𝜅(𝐺)− 4𝑏𝑘 − 5

2(𝑎 + 1)2
− 𝑏

)︁
𝑡

≥ 5
4

+
(︁𝑏(𝑎 + 1)(𝑏 + 1)

(𝑎 + 1)2
− 𝑏

)︁
𝑡

≥ 5
4
,

which is a contradiction. Theorem 1.3 is verified. �

3. Remarks

Remark 3.1. Now we discuss a sharpness of the connectivity condition in Theorem 1.3. This condition is best
possible in the sense that we cannot replace it by 𝜅(𝐺) ≥ 2𝑏(𝑎+1)(𝑏+1)+4𝑏𝑘+5

4𝑏 − 1.
Let 𝑘 ≥ 0 be an integer, and 𝑏 ≥ 𝑎 ≥ 4 be two even integers such that 𝑏(𝑎+1)(𝑏+1)−𝑏

2𝑎 is an integer. We
construct a graph 𝐺 = 𝐾 (𝑎+1)(𝑏+1)−1

2 +𝑘
∨ ( 𝑏(𝑎+1)(𝑏+1)−𝑏

2𝑎 𝐾1), where ∨ means “join”. Then it is obvious that
2𝑏(𝑎+1)(𝑏+1)+4𝑏𝑘+5

4𝑏 > 𝜅(𝐺) = (𝑎+1)(𝑏+1)−1
2 +𝑘 = 2𝑏(𝑎+1)(𝑏+1)+4𝑏𝑘+2𝑏

4𝑏 −1 > 2𝑏(𝑎+1)(𝑏+1)+4𝑏𝑘+5
4𝑏 −1 by the definition

of 𝜅(𝐺). We select 𝑈 ⊆ 𝑉 (𝐾 (𝑎+1)(𝑏+1)−1
2 +𝑘

) with |𝑈 | = 𝑘, 𝑋 = 𝑉 (𝐾 (𝑎+1)(𝑏+1)−1
2 +𝑘

) ∖ 𝑈 , 𝑌 = 𝑉 ( 𝑏(𝑎+1)(𝑏+1)−𝑏
2𝑎 𝐾1)

and 𝐻 = 𝐺− 𝑈 . Clearly, 𝜀(𝑋, 𝑌 ) = 2. Thus, we derive

𝜃𝐻(𝑋,𝑌 ) = 𝑏|𝑋|+ 𝑑𝐻−𝑋(𝑌 )− 𝑎|𝑌 |

= 𝑏 · (𝑎 + 1)(𝑏 + 1)− 1
2

− 𝑎 · 𝑏(𝑎 + 1)(𝑏 + 1)− 𝑏

2𝑎
= 0 < 2 = 𝜀(𝑋, 𝑌 ).

By Lemma 2.1, 𝐻 is not a fractional [𝑎, 𝑏]-covered graph, namely, 𝐺 is not a fractional (𝑎, 𝑏, 𝑘)-critical covered
graph.

Remark 3.2. Now we discuss a sharpness of the connectivity condition in Theorem 1.3. This condition is best
possible in the sense that we cannot replace it by 𝜅(𝐺) ≥ (𝑎+1)2𝛼(𝐺)+4𝑏𝑘+4

4𝑏 .

Let 𝑏 ≥ 𝑎 ≥ 1, 𝑚 ≥ 1 and 𝑘 ≥ 0 be integers such that 𝑎 is odd and (𝑎+1)2𝑚+4
4𝑏 is an integer. We construct

a graph 𝐺 = 𝐾𝑝+𝑘 ∨ (𝑚𝐾 𝑎+1
2

), where 𝑝 = (𝑎+1)2𝑚+4
4𝑏 . From the definitions of 𝛼(𝐺) and 𝜅(𝐺), we easily see

that 𝛼(𝐺) = 𝑚 and 𝜅(𝐺) = 𝑝 + 𝑘 = (𝑎+1)2𝑚+4𝑏𝑘+4
4𝑏 = (𝑎+1)2𝛼(𝐺)+4𝑏𝑘+4

4𝑏 . We select 𝑈 ⊆ 𝑉 (𝐾𝑝+𝑘) with |𝑈 | = 𝑘,
𝑋 = 𝑉 (𝐾𝑝+𝑘) ∖ 𝑈 , 𝑌 = 𝑉 (𝑚𝐾 𝑎+1

2
) and 𝐻 = 𝐺− 𝑈 . Obviously, 𝜀(𝑋, 𝑌 ) = 2. Thus, we gain
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𝜃𝐻(𝑋, 𝑌 ) = 𝑏|𝑋|+ 𝑑𝐻−𝑋(𝑌 )− 𝑎|𝑌 |

= 𝑏 · (𝑎 + 1)2𝑚 + 4
4𝑏

+ 𝑚 · 𝑎 + 1
2

·
(︁𝑎 + 1

2
− 1

)︁
− 𝑎𝑚 · 𝑎 + 1

2
= 1 < 2 = 𝜀(𝑋, 𝑌 ).

Using Lemma 2.1, 𝐻 is not a fractional [𝑎, 𝑏]-covered graph, and so 𝐺 is not a fractional (𝑎, 𝑏, 𝑘)-critical covered
graph.

Acknowledgements. The authors are grateful to the anonymous referees for their thoughtful suggestions which improved
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References

[1] H. Assiyatun and N. Wormald, 3-star factors in random 𝑑-regular graphs. Eur. J. Comb. 27 (2006) 1249–1262.

[2] S. Bekkai, Minimum degree, independence number and pseudo [2, 𝑏]-factors in graphs. Discrete Appl. Math. 162 (2014)
108–114.

[3] S. Belcastro and M. Young, 1-factor covers of regular graphs. Discrete Appl. Math. 159 (2011) 281–287.

[4] Q. Bian and S. Zhou, Independence number, connectivity and fractional (𝑔, 𝑓)-factors in graphs. Filomat 29 (2015) 757–761.

[5] Y. Egawa, M. Kano and M. Yokota, Existence of all generalized fractional (𝑔, 𝑓)-factors of graphs. Discrete Appl. Math. 283
(2020) 265–271.

[6] W. Gao, J. Guirao and Y. Chen, A toughness condition for fractional (𝑘, 𝑚)-deleted graphs revisited. Acta Math. Sin. Engl.
Ser. 35 (2019) 1227–1237.

[7] W. Gao, W. Wang and J. Guirao, The extension degree conditions for fractional factor. Acta Math. Sin. Engl. Ser. 36
(2020) 305–317.

[8] K. Kotani, Binding numbers of fractional 𝑘-deleted graphs. Proc. Japan Acad. Ser. A 86 (2010) 85–88.

[9] Z. Li, G. Yan and X. Zhang, On fractional (𝑔, 𝑓)-covered graphs. OR Trans. (China) 6 (2002) 65–68.

[10] G. Liu and L. Zhang, Characterizations of maximum fractional (𝑔, 𝑓)-factors of graphs. Discrete Appl. Math. 156 (2008)
2293–2299.

[11] X. Lv, A degree condition for fractional (𝑔, 𝑓, 𝑛)-critical covered graphs. AIMS Math. 5 (2020) 872–878.

[12] S. Tsuchiya and T. Yashima, A degree condition implying Ore-type condition for even [2, 𝑏]-factors in graphs. Discuss. Math.
Graph Theory 37 (2017) 797–809.

[13] S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277.

[14] S. Wang and W. Zhang, On 𝑘-orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977.

[15] Y. Yuan and R. Hao, A neighborhood union condition for fractional ID-[𝑎, 𝑏]-factor-critical graphs. Acta Math. Appl. Sin.
Engl. Ser. 34 (2018) 775–781.

[16] S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory (2020) DOI:
10.7151/dmgt.2364.

[17] S. Zhou, A neighborhood union condition for fractional (𝑎, 𝑏, 𝑘)-critical covered graphs. Discrete Appl. Math. (2021) DOI:
10.1016/j.dam.2021.05.022.

[18] S. Zhou, A result on fractional (𝑎, 𝑏, 𝑘)-critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664.

[19] S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. DOI:
10.1007/s10255-022-1096-2.

[20] S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs, Acta Math. Appl. Sin. Engl. Ser. 38 (2022)
417–425.

[21] S. Zhou, Y. Xu and Z. Sun, Degree conditions for fractional (𝑎, 𝑏, 𝑘)-critical covered graphs. Inf. Process. Lett. 152 (2019)
105838.

[22] S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. (2021) DOI:
10.1017/S0004972721000952.

[23] S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191.

[24] S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[𝑎, 𝑏]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022)
511–516.

[25] S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022)
DOI: 10.1007/s13226-022-00286-x.

[26] S. Zhou, Z. Sun and H. Liu, On 𝑃≥3-factor deleted graphs, Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 178–186.

[27] S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802.

https://doi.org/10.7151/dmgt.2364
https://doi.org/10.1016/j.dam.2021.05.022
https://doi.org/10.1007/s10255-022-1096-2
https://doi.org/10.1017/S0004972721000952
https://doi.org/10.1007/s13226-022-00286-x


2542 S. ZHOU ET AL.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Proof of Theorem 3
	Remarks
	References

