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INDEPENDENCE NUMBER AND CONNECTIVITY FOR FRACTIONAL
(a, b, k)-CRITICAL COVERED GRAPHS

S1ZHONG ZHou'*, JIANCHENG WU! AND HoNGXIA Liu?

Abstract. A graph G is a fractional (a, b, k)-critical covered graph if G—U is a fractional [a, b]-covered
graph for every U C V(G) with |U| = k, which is first defined by (Zhou, Xu and Sun, Inf. Process. Lett.
152 (2019) 105838). Furthermore, they derived a degree condition for a graph to be a fractional (a, b, k)-
critical covered graph. In this paper, we gain an independence number and connectivity condition for a
graph to be a fractional (a, b, k)-critical covered graph and verify that G is a fractional (a, b, k)-critical
covered graph if

2b(a+1)(b+1) +4bk +5 (a+1)°a(G) + 4bk + 5}.

>
Kk(G) > max{ I , m
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1. INTRODUCTION

The fractional factor problems in graphs can be regarded as a relaxation of the well-known cardinality
matching problems. In a data transmission net work, the feasible assignment of data packets can be seen as a
fractional flow problem, that is, the existence of a fractional [a, b]-factor [10].

The existence of a fractional (a,b, k)-critical covered graph plays a key role in the data transmission of
networks. If a channel is assigned, and some nodes are damaged in the process of the data transmission at
the moment, the possibility of transmission between data is characterized by whether the corresponding graph
of the network is a fractional (a, b, k)-critical covered graph [21]. The independence number and connectivity
conditions are often applied to measure the vulnerability and robustness of a network, which are two important
parameters in network design and data transmission.

We discuss finite graphs which have neither multiple edges nor loops. Let G be a graph with vertex set V(G)
and edge set E(G). Let X and Y be disjoint vertex subsets of G. The number of edges of G joining X to
Y is denoted by eg(X,Y). We denote by G[X] and G — X the subgraph of G induced by X and V(G) \ X,
respectively. A vertex subset X of G is called independent if G[X] does not contain edges. We use «(G) and k(Q)
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to denote the independence number and the connectivity of G, respectively. For € V(G), we denote by dg(x)

the degree of = in G and by N¢(z) the set of vertices adjacent to z in G. We set §(G) = min{dg(z) : z € V(G)}

and Ng|z] = Ng(x) U {z}. For any X C V(G), we write dg(X) = > dg(z). We denote by K,, the complete
reX

graph of order n.
Let a < b be two positive integers. A spanning subgraph F of G is called an [a,b]-factor if a < dp(z) < b for
every x € V(G). Let h : E(G) — [0,1] be a function. If a < 3 h(e) < b holds for all x € V(G), then we call

esx

a graph F with vertex set V(G) and edge set Ep, a fractional [a,b]-factor of G with indicator function h, where
En={e:ec E(G),h(e) > 0}. A fractional [a,b]-factor of G is called a fractional r-factor of G ifa=b=r. A
graph G is called a fractional [a, b]-covered graph if for any e € E(G), G admits a fractional [a,b]-factor F, with
indicator function hp, such that hp(e) = 1. Bian and Zhou posed an independence number and connectivity
condition for the existence of fractional r-factors in graphs, which is a special case of a more general result by
Bian and Zhou [4].

Theorem 1.1. ([4]). Let G be a graph, and r > 1 be an integer. Then G possesses a fractional r-factor if

(r+12 (r+1)%a(G)
k(G) > max{ 5 p }

Some other results related to factors [1-3,12,14,16,19,20,22,23,25-27] and fractional factors [5-8,11,13,15,
17,18, 24] of graphs were obtained by many authors. A graph G is called a fractional (a,b, k)-critical covered
graph if after removing any k vertices of G, the resulting graph of G is a fractional [a,b]-covered graph, which
is first defined by Zhou, Xu and Sun [21]. Furthermore, Zhou, Xu and Sun [21] obtained a degree condition for
graphs being fractional (a, b, k)-critical covered.

Theorem 1.2. (/21]). Let a,b and k be three integers with a > 1, b > max{2,a} and k > 0, and let G be a
graph of order n with n > (“+b)(a+bb_1)+bk+3 and 6(G) > a+ k+ 1. Then G is a fractional (a,b, k)-critical
covered graph if

an + bk + 2
max{dg(z),dc(y)} > Tatb

for every pair of nonadjacent vertices x and y of G.
In this paper, we study the relationship between the independence number, connectivity and fractional

(a,b, k)-critical covered graphs, and gain a new result on the existence of fractional (a,b, k)-critical covered
graphs, which is an extension of Theorem 1.1.

Theorem 1.3. Let a,b and k be three integers with b > a > 1 and k > 0, and let G be a graph. Then G is a
fractional (a, b, k)-critical covered graph if

2b(a+1)(b+1) +4bk +5 (a+1)?a(G) + 4bk + 5}-

>
K@) = max{ 4b ’ 4b

We immediately derive the following result from Theorem 1.3.

Corollary 1.4. Leta and b be integers withb > a > 1, and let G be a graph. Then G is a fractional [a, b]-covered
graph if

20(a+1)(b+1)+5 (a+1)%a(G) + 5}.

>
#(G) 2 max { 4b ’ b
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If a = b = r in Theorem 1.3, then we have the following corollary. Obviously, Corollary 1.5 is a generalization
of Theorem 1.1 by the definition of a fractional r-covered graph.

Corollary 1.5. Let r be an integer with r > 1, and let G be a graph. Then G is a fractional r-covered graph if

2r(r+1)24+5 (r+1)%a(G) +5 }

>
k(G) > max{ e ) ir

2. PROOF OF THEOREM 3
We use the following lemma to verify Theorem 1.3.
Lemma 2.1. (/9]). Let G be a graph, and let a,b be two integers with b > a > 0. Then G is a fractional
[a, b]-covered graph if and only if for any vertex subset X of G,
66(X.Y) = b|X| + dg_x (V) — alY| > (X, )

where Y ={y:y € V(G)\ X,dg-x(y) < a} and e(X,Y) is defined by
2,if X is not independent,
1,if X is independent and there is an edge joining X and V(G)\ (X UY), or

there is an edge e = xy joining X and Y with dg_x(y) =a for y €Y,
0, otherwise.

e(X,Y) =

Proof of Theorem 3. Let U C V(G) with |[U| =k, and let H = G — U. Tt suffices to verify that H is a fractional
[a, b]-covered graph. We shall prove this by contradiction. Suppose that H is not a fractional [a, b]-covered graph.
Then using Lemma 2.1, we have

0 (X,Y)=0bX|+dg_x(Y)—alY|<e(X,Y)-1 (2.1)
for some vertex subset X of H and Y ={y:y € V(H)\ X,dy_x(y) < a}.
Claim 2.2. Y # 0.
Proof. Let Y = . Then by (2.1) and (X, 0) < | X|, we get
e(X,0) —1>05(X,0) =0b/X| >|X|>e(X,0),
this is a contradiction. Claim 2.2 is proved. (]
Claim 2.3. X # (.

2b(a+1)(b+1)4+4bk+5
Proof. Let X = (). Then (0, Y) = 0. Note that §(H) = §(G —U) > §(G) —k > r(G) — k > 2latDEH]) -

fp= &HOFD 4 5 ¢ 1 1. Then using (2.1) and Claim 2.2 we obtain

1> 050,Y) = dg(Y) —alY] > (6(H) — a)|Y]
> ((a+1)—a)Y]= Y| 21,

which is a contradiction. We prove Claim 2.3. (I
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Since Y # 0 (by Claim 2.2), we take y; € Y such that y; is the vertex with the minimum degree in H[Y].

We set N = Ng[y1]NY and Y, =Y. Y — |J N; #0fori>2 writeY; =Y — |J N;. Then take y; € Y;
1<) <i 1<5<i

such that y; is the vertex with the minimum degree in H[Y;], and N; = Ng[y;] NY;. We go on these procedures

until we arrive at the situation in which Y; = () for some i, say for ¢ = m + 1. Then from the definition above

we see that {y1,y2, - ,Ym} is an independent set of H, and is also an independent set of G. Obviously, m > 1
by Claim 2.2.
If we write |N;| = n;, then |Y|= > n;. Weset W=V (H)\ (XUY) and x(H — X) =t.
1<i<m

Claim 2.4. m#1 or W # (.

Proof. Let m =1 and W = (. Note that W = () is equivalent to saying that there is no vertex y in V(H) \ X
such that dg_x(y) > a. Then we easily see that

2b(a + 1) (b + 1) + 4bk + 5
4b ’

V(G| =Ul+[X]+n =k+|X[+n >k(G) >
namely,
2b(a+1)(b+1) +5
4b
According to (2.1), (2.2), e(X,Y) < 2 and the choice of y;, we get
1>2eX,)Y)-12>205(X,)Y)=0X|+dy_x(Y)—a|Y]
=bX|+ni(ng —1) —any
2b DHOBL+1)+5
>b( (a+1)(b+1)+

1X| > — . (2.2)

- nl) +mni1(ny — 1) —any

4b
2b(a+1)(b+1)+5 a+b+1\2 (a+b+1)2

- 4 + (nl N 2 ) - 4

S 20(a+1)(b+1)+5 (a+b+1)

- 4 4

b (2a+1)—(a+1)*+5

B 4

- a?(2a+1) - (a+1)2+5

- 4

2 _
= M > 1,
5 >

which is a contradiction. We verify Claim 2.4. (|
Claim 2.5. dy_x(Y)> > ni(n;—1)+ %L

1<i<m

Proof. In terms of the choice of y;, we derive
Do dviy) = Y ma(n—1). (2.3)
1<i<m yeN; 1<i<m

For the left-hand side of (2.3), an edge joining a vertex x in N; and a vertex y in N; (i < j) is counted only
once, namely, it is counted in dy;, (x) but not in dy, (y). The edges of type xy (z € N; and y € Nj, for i < j) are
not counted on the RHS of (2.3). Hence, we admit

dy-x(Y) > Z ni(n; —1) + Z en(Ni, Nj) +en (Y, W). (2.4)

1<i<m 1<i<j<m
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In light of k(H — X) =t and Claim 2.4, we get

eH(NhUNj)‘f'eH(NhW) >t (25)
i
for every N; (1 <i < m). Using (2.5), we obtain
Z (err (N, U Nj) +en(N;, W)) =2 Z er(Ni, Nj) + e (Y, W) > mt.
1<i<m j#i 1<i<j<m

We easily see that

t
> en(NiNy) +en(Y, W) = . (2.6)
1<i<j<m
It follows from (2.4) and (2.6) that
mt
dy-x(Y) > Z ni(ni —1) + -
1<i<m
We finish the proof of Claim 2.5. O
Note that |Y| = > n;. It follows from (2.1), e(X,Y) < 2 and Claim 2.5 that

1<i<m

1>e(X,Y) = 1> 05(X,Y) =b|X|+dy_x(Y) —a|Y]

mt

> b X|+ Zni(ni—l)—i—?—a A n;
1<i<m 1<i<m
B a+1\2 (a+1)2 mt
e 3 (-t -0
1<i<m
m(a+1)%2  mt
>l X - — 4+
> bl X]| T T3
t  (a+1)?
=X+ (5 = )m,
namely,
t 1)2
121;\)(|+<7—(a+ ) Jm (2.7)
2 4
Combining (2.7), Claim 2.3 and m > 1, we admit
t  (a+1)2
1> 0]+ (5 - )
> bl X|+ 5 1 m
t  (a+1)2
> Z
= bt (2 4 )m
t  (a+1)?
> 14 (5 - Jm,
> 1+ 5 1
which implies
t 1)2
L (et (2.8)



2540 S. ZHOU ET AL.

We easily see that a(G) > «(G[Y]) = a(H[Y]) > m and «(G) < k(G -U)+k = w(H)+ k < wk(H —
XyHXHwﬁ:rHXHwamh@t&n@)zmm{%W“W“”“HiW“ﬁﬁ?”M%}Jznamuz&

15
we derive
t  (a+1)?
> i
1> 0]+ ( . . Jm
t (a+1)?
> b(k(G) — k — 1) + (5— ( y ) )a(G)
t a+1)%\ 4bk(G) — 4bk — 5
me«”_k_”+(§_< 4>)' (@+1P
5 4bk(G) — 4bk — 5
_4+( 2(a +1)2 _wﬁ
5 bla+1)(b+1)
> = S e’ S
=5+ ( (@t 1)? bt
5
> Rl
— 4
which is a contradiction. Theorem 1.3 is verified. O

3. REMARKS

Remark 3.1. Now we discuss a sharpness of the connectivity condition in Theorem 1.3. This condition is best
possible in the sense that we cannot replace it by x(G) > Qb(a“)(bz)l)“bk% — 1.

b(a+1)(b+1)—b
2a

1), where V means “join”. Then it is obvious that

Let £k > 0 be an integer, and b > a > 4 be two even integers such that is an integer. We

construct a graph G = K(a+1)(b+l)—1+k Vv (WK
2

2b(a+1)(b2;)1)+4bk+5 > k(@) = (a+1)(;7+1)—1 k= 2b(a+1)(b—j1-b1)+4bk+2b 1> 2b(a+1)(b;)1)+4bk+5 1 by the definition

of #(G). We select U € V(K winwin-1,,) with [U] =k, X = V(K @ipoen-1,,) \U, ¥V = V(HEEU=L )
and H = G —U. Clearly, e(X,Y) = 2. Thus, we derive

Ou(X,Y) =bX|+dg-_x(Y) —alY]|
. (a+1)(b+1)—1 . bla+1)(b+1)—b
2 2a
—0<2=¢(X,Y).

By Lemma 2.1, H is not a fractional [a, b]-covered graph, namely, G is not a fractional (a, b, k)-critical covered
graph.

Remark 3.2. Now we discuss a sharpness of the connectivity condition in Theorem 1.3. This condition is best
(@) > (a+1)%a(G)+4bk+4
= b :

possible in the sense that we cannot replace it by
2
Let b>a > 1, m > 1 and k > 0 be integers such that a is odd and (aJrlé)libmH is an integer. We construct
2
a graph G = Kpip V (mKaTH), where p = Wibmﬂ. From the definitions of a(G) and k(G), we easily see

that a(G) = m and xk(G) =p+k = (a+1)272:4bk+4 = (‘ZH)Qa(fb)kuH. We select U C V(Kp4x) with [U| =k,
X =V(Epe)\U, Y = V(mKaTH) and H = G — U. Obviously, ¢(X,Y) = 2. Thus, we gain
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0r(X,Y) =b|X| + dy_x(Y) —alY]

o (a+1)*m+4 a+1 <a+1 ) a+1
=b I +m 5 5 1 am - —
=1<2=¢X)Y).

Using Lemma 2.1, H is not a fractional [a, b]-covered graph, and so G is not a fractional (a, b, k)-critical covered
graph.
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