The super-connectivity of odd graphs and of their kronecker double cover
RAIRO. Operations Research, Tome 55 (2021), pp. S699-S704

The study of connectivity parameters forms an integral part of the research conducted in establishing the fault tolerance of networks. A number of variations on the classical notion of connectivity have been proposed and studied. In particular, the super-connectivity asks for the minimum number of vertices that need to be deleted from a graph in order to disconnect the graph without creating isolated vertices. In this work, we determine this value for two closely related families of graphs which are considered as good models for networks, namely the odd graphs and their Kronecker double cover. The odd graphs are constructed by taking all possible subsets of size k from the set of integers {1,…,2k + 1} as vertices, and defining two vertices to be adjacent if the corresponding k-subsets are disjoint; these correspond to the Kneser graphs KG(2k + 1, k). The Kronecker double cover of a graph G is formed by taking the Kronecker product of G with the complete graph on two vertices; in the case when G is KG(2k + 1, k), the Kronecker double cover is the bipartite Kneser graph H(2k + 1, k). We show that in both instances, the super-connectivity is equal to 2k.

DOI : 10.1051/ro/2020004
Classification : 05C40, 94C15, 05D05
Keywords: Connectivity, super-connectivity, odd graph, Kneser graph, bipartite Kneser graph, Kronecker double cover
@article{RO_2021__55_S1_S699_0,
     author = {Boruzanl{\i} Ek\ensuremath{\dot{}}in\.{c}i, G\"ulnaz and Gauci, John Baptist},
     title = {The super-connectivity of odd graphs and of their kronecker double cover},
     journal = {RAIRO. Operations Research},
     pages = {S699--S704},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020004},
     mrnumber = {4223103},
     zbl = {1469.05094},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020004/}
}
TY  - JOUR
AU  - Boruzanlı Ek̇inċi, Gülnaz
AU  - Gauci, John Baptist
TI  - The super-connectivity of odd graphs and of their kronecker double cover
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S699
EP  - S704
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020004/
DO  - 10.1051/ro/2020004
LA  - en
ID  - RO_2021__55_S1_S699_0
ER  - 
%0 Journal Article
%A Boruzanlı Ek̇inċi, Gülnaz
%A Gauci, John Baptist
%T The super-connectivity of odd graphs and of their kronecker double cover
%J RAIRO. Operations Research
%D 2021
%P S699-S704
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020004/
%R 10.1051/ro/2020004
%G en
%F RO_2021__55_S1_S699_0
Boruzanlı Ek̇inċi, Gülnaz; Gauci, John Baptist. The super-connectivity of odd graphs and of their kronecker double cover. RAIRO. Operations Research, Tome 55 (2021), pp. S699-S704. doi: 10.1051/ro/2020004

C. Balbuena and X. Marcote, The p -restricted edge-connectivity of Kneser graphs. Appl. Math. Comput. 343 (2019) 258–267. | MR | Zbl

F. T. Boesch, Synthesis of reliable networks – a survey. IEEE Trans. Reliab. 35 (1986) 240–246. | Zbl | DOI

F. Boesch and R. Tindell, Circulants and their connectivities. J. Graph Theory 8 (1984) 487–499. | MR | Zbl | DOI

G. Boruzanlı Ekinci and J. B. Gauci, On the reliability of generalized Petersen graphs. Discrete Appl. Math. 252 (2019) 2–9. | MR | Zbl | DOI

G. Boruzanlı Ekinci and J. B. Gauci, The super-connectivity of Johnson graphs. Discrete Math. Theor. Comput. Sci. 22 (2020) 12. | MR | Zbl

G. Boruzanlı Ekinci and J. B. Gauci, The super-connectivity of Kneser graphs. Discuss. Math. Graph Theory 39 (2019) 5–11. | MR | Zbl | DOI

G. Boruzanlı Ekinci and A. Kırlangiç, Super connectivity of Kronecker product of complete bipartite graphs and complete graphs. Discrete Math. 339 (2016) 1950–195. | MR | Zbl | DOI

X. L. Cao and E. Vumar, Super edge connectivity of Kronecker products of graphs. Int. J. Found. Comput. Sci. 25 (2014) 59–65. | MR | Zbl | DOI

B. L. Chen and K.-W. Lih, Hamiltonian uniform subset graphs. J. Comb. Theory, Ser. B. 42 (1987) 257–263. | MR | Zbl | DOI

C. Dalfó Simó, M. À. Fiol Mora and M. M. Riera, On middle cube graphs. Electron. J. Graph Theory App. 3 (2015) 133–145. | MR | Zbl

G. Gévay and T. Pisanski, Kronecker covers, V -construction, unit-distance graphs and isometric point-circle configurations. Ars Math. Contemp. 7 (2013). | MR | Zbl | DOI

L. Guo and X. Guo, Super connectivity of Kronecker products of some graphs. Ars Comb. 123 (2015) 65–73. | MR | Zbl

L. Guo, G. Su, W. Lin and J. Chen, Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334 (2018) 401–406. | MR | Zbl

F. Harary, Conditional connectivity. Networks 13 (1983) 347–357. | MR | Zbl | DOI

M.-C. Heydemann, Cayley graphs and interconnection networks, edited by G. Hahn and G. Sabidussi. In: Graph Symmetry: Algebraic Methods and Applications. Springer Netherlands, Dordrecht (1997) 167–224. | MR | Zbl | DOI

J.-S. Kim, E. Cheng, L. Lipták and H.-O. Lee, Embedding hypercubes, rings, and odd graphs into hyper-stars. Int. J. Comput. Math. 86 (2009) 771–778. | MR | Zbl | DOI

A. Kowalewski, WR Hamilton’s Dodekaederaufgabe als Buntordnungproblem. Sitzungsber. Akad. Wiss. Wien (Abt. IIa) 126 (1917) 67–90, 963–1007. | JFM

L. Lovász, Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A. 25 (1978) 319–324. | MR | Zbl | DOI

M. Lü, C. Wu, G.-L. Chen and C. Lv, On super connectivity of Cartesian product graphs. Networks 52 (2008) 78–87. | MR | Zbl | DOI

S. M. Mirafzal, On the automorphism groups of regular hyperstars and folded hyperstars. Ars Comb. 123 (2011) 75–86. | MR | Zbl

S. M. Mirafzal and A. Zafari, Some algebraic properties of bipartite Kneser graphs. Preprint arXiv:1804.04570, to appear in Ars Combinatoria (2018). | MR | Zbl

T. Mütze and P. Su, Bipartite Kneser graphs are Hamiltonian. Electron. Notes Discrete Math. 49 (2015) 259–267. | Zbl | DOI

M. E. Watkins, Connectivity of transitive graphs. J. Comb. Theory 8 (1970) 23–29. | MR | Zbl | DOI

W. Yang and J. Meng, Extraconnectivity of hypercubes. Appl. Math. Lett. 22 (2009) 887–891. | MR | Zbl | DOI

W. Yang and J. Meng, Extraconnectivity of hypercubes (II). Australas. J. Comb. 47 (2010) 189–195. | MR | Zbl

Cité par Sources :