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THE SUPER-CONNECTIVITY OF ODD GRAPHS AND OF THEIR
KRONECKER DOUBLE COVER

GULNAZ BoRruzANLI EKiNci' AND JOHN BaprTIisST GAUCI®*

Abstract. The study of connectivity parameters forms an integral part of the research conducted
in establishing the fault tolerance of networks. A number of variations on the classical notion of con-
nectivity have been proposed and studied. In particular, the super-connectivity asks for the minimum
number of vertices that need to be deleted from a graph in order to disconnect the graph without cre-
ating isolated vertices. In this work, we determine this value for two closely related families of graphs
which are considered as good models for networks, namely the odd graphs and their Kronecker double
cover. The odd graphs are constructed by taking all possible subsets of size k from the set of integers
{1,...,2k + 1} as vertices, and defining two vertices to be adjacent if the corresponding k-subsets are
disjoint; these correspond to the Kneser graphs K G(2k + 1, k). The Kronecker double cover of a graph
G is formed by taking the Kronecker product of G with the complete graph on two vertices; in the case
when G is KG(2k + 1, k), the Kronecker double cover is the bipartite Kneser graph H(2k + 1, k). We
show that in both instances, the super-connectivity is equal to 2k.
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1. INTRODUCTION

The family of odd graphs was introduced in 1917 by Kowaleski [17], although the name was only coined
much later. One generalisation of the concept underlying odd graphs is given by the family of Kneser graphs,
introduced by Lovész in his proof of Kneser’s conjecture [18]. For any two integers k > 1 and n > 2k + 1, the
Kneser graph KG(n, k) has the k-element subsets of [n] := {1,2,...,n} as vertices and any pair of disjoint
subsets forms an edge. Thus, KG(n, k) has (Z) vertices and is regular of degree (";k) It is well-known that
if n < 2k, then KG(n,k) is a null graph, while if n = 2k, then KG(n, k) consists of k disjoint copies of the
complete graph on two vertices. The Kneser graph KG(n, 1) is isomorphic to the complete graph on n vertices,
and hence, when referring to Kneser graphs, we shall always assume that k& > 2.

The Kronecker double cover (or, equivalently, the bipartite double cover) of the Kneser graph KG(n,k) is
known as the bipartite Kneser graph H(n, k). More formally, for any two integers k > 1 and n > 2k + 1, the
bipartite Kneser graph H (n, k) has all the k-element subsets and all the (n— k)-element subsets of [n] as vertices,
and two vertices are adjacent if and only if one of them is a subset of the other. It follows that H(n, k) has 2(})
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vertices and is regular of degree (”;k) = (7?:2]2). The reason why we chose n > 2k + 1 is that H(2k, k) is, in
fact, a null graph.

It has long been conjectured that the Kneser graphs and the bipartite Kneser graphs have a Hamiltonian
cycle, apart from one notorious exception, namely the Petersen graph KG(5,2). The sparsest among these
graphs (that is, those graphs for which the ratio of the number of edges to the number of vertices is smallest)
are respectively KG(2k+1,k) and H(2k+ 1, k). In the myriad of papers on the subject, these two families have
received particular attention because proving Hamiltonicity for the sparsest cases is particularly intricate [22].

In this work we focus our attention on these two families of graphs, that is, the Kneser graph KG(2k + 1, k)
and the bipartite Kneser graph H(2k + 1, k). The former is the odd graph O1, where, for any integer k > 2,
the vertex-set corresponds to the set of all possible k-element subsets of a (2k + 1)-element set, and two vertices
are adjacent if and only if the corresponding k-subsets are disjoint. The latter is sometimes referred to as the
revolving door graph, the middle-levels graph [11], the middle cube MQaxy+1 = Qary1(k,k + 1) [10], or the
regular hyperstar graph HS(2(k + 1),k + 1) [16,20,21].

A graph G is vertez-transitive (resp. edge-transitive) when, for every pair of vertices u,v € V(G) (resp. edges
e1,ez € E(G)), there is an automorphism that maps u to v (resp. e; to e2). If a graph G is both vertex-
and edge-transitive, then G is symmetric. It is usually desirable that interconnection networks are modelled
using symmetric graphs [15], because vertex-transitivity permits the implementation of the same routing and
communication schemes at each vertex (or node) of the network, whereas edge-transitivity allows recursive
constructions to be used. In 1987, Chen and Lih showed that the Kneser graphs are symmetric [9], while the
bipartite Kneser graphs were shown to be symmetric by Mirafzal and Zafari [21].

Apart from symmetry, another property that is usually desirable when modelling interconnection networks
is regularity as this simplifies their study in terms of diameter and diameter vulnerability problems. Many large
interconnection networks are modelled by sparse graphs so as to keep the “expense” of linking the nodes to
a minimum. Social, biological, computer and transportation networks are only a few examples of such real
networks. However, connectivity parameters are also generally taken into consideration when modelling these
networks as high connectivity makes them more tolerant to faults.

Ensuring and preserving connectivity is, in fact, vital in most networks. It is thus fully apprehensible that
connectivity studies are a fundamental topic that still attracts a great deal of consideration in the field of
combinatorial optimisation. The property of a graph being highly connected depends solely on the number
of paths that the graph contains between every pair of vertices. Besides the classical connectivity measures
that study the minimum number of vertices or edges that need to be deleted to disconnect the graph, other
types of connectivity have recently received much attention. These include connectivity parameters that impose
some restrictions on the components of the remaining graph; a notion proposed by Harary [14] and known as
conditional connectivity.

In particular, in this work we restrict our attention to the super-connectivity of a graph as it is argued by
many (see e.g. [2]) that this parameter provides a better measure of the reliability of a network. This notion
studies the least number of vertices that need to be deleted from a graph to disconnect the graph such that
each remaining component is not trivial, that is, each component is restricted to contain at least two adjacent
vertices. More formally, the super-connectivity of a graph G is the size of a minimum vertex-cut S (that is, a
vertex-cut of smallest cardinality over all vertex-cuts of GG) such that G — S is disconnected and has no isolated
vertices. If such a vertex-cut exists, it is referred to as a super vertex-cut and its cardinality is denoted by
k' = K'(G); otherwise we write k'(G) = +o00. A graph G is super-connected if every minimum vertex-cut is
made up of the neighbourhood Ng(z) of a vertex = € V(G), where Ng(z) = {y € V(G) : zy € E(G)}. In
this case, ' is strictly greater than the connectivity k = k(G) of G; otherwise £’ = k. Some examples of graph
classes which have been analysed for their super-connectivity are circulant graphs [3], products of various graphs
(see [7,8,12,19], and the references therein), hypercubes [13,24, 25], generalized Petersen graphs [4], Johnson
graphs [5] and Kneser graphs [1,6].

In the sequel, we consider the odd graphs and their Kronecker double cover. In Section 2, we present some
preliminary results pertaining to our work on super-connectivity. This parameter is then determined for the
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sparsest Kneser graphs in Section 3, thereby proving part of the conjecture in [6], namely that &'(KG(2k +
1,k)) = 2k for k > 2. In order to facilitate a direct comparison with the aforementioned conjecture, when
discussing odd graphs we shall thus use the notation pertaining to Kneser graphs. In Section 4, we shift our
attention to the sparsest bipartite Kneser graphs and determine their super-connectivity.

2. PRELIMINARIES

Two fundamental properties of a minimum super vertex-cut of a connected graph G are presented in the
following remark. Whereas the first property follows immediately since otherwise G would be disconnected, the
second one revolves around the minimality of the super vertex-cut.

Remark 2.1. A minimum super vertex-cut S of G contains a vertex having at least a neighbour in every
component of G — S. Moreover, if a vertex v in a minimum super vertex-cut S of G has a neighbour in one
component of G — S, then it has at least one neighbour in every component of G — S.

Watkins proved that if a connected simple graph G is edge-transitive and regular, then the connectivity of G
is maximum [23]. Thus, the connectivity of Kneser graphs and of bipartite Kneser graphs follow immediately.

Theorem 2.2. The connectivity of the Kneser graph KG(n,k) forn > 2k and k > 1 is (”;k)

Theorem 2.3. The connectivity of the bipartite Kneser graph H(n,k) forn > 2k and k > 1 is (";k)

To simplify the notation used, we adopt the same convention introduced in [5]. A vertex x corresponding to
the r-subset {1,...,7} € ([Z]) will be denoted by « = 21 ... z,, where z1,. .., 2, are referred to as the entries of x.
We shall denote by x{ the vertex obtained from the vertex = by removing the entry z; from x and introducing a
new entry z; which is not in . For instance, if © = z; ... 2, then o[ ™" = {1,... . 7}\ {1} U{r+1} = z0... 2,41.

, Y
This process can be repeated in such a way that fo; = (xf )h, where the entry 2z, is removed from z? and the

i

entry z, is introduced in .

3. THE SUPER-CONNECTIVITY OF ODD GRAPHS

In Theorem 3.1, we first establish a lower bound for «'(KG(2k + 1,k)) and then show that it is possible to
find a super vertex-cut that attains this value.

Theorem 3.1. The super-connectivity of the odd graph KG(2k + 1, k) is 2k, where k > 2.

Proof. The odd graph KG(5,2) is the well-known Petersen graph, which has super-connectivity equal to 4 [4].
Thus, we let £ > 3.

Let S be a minimum super vertex-cut of G = KG(2k + 1, k) and let C; and Cs be two components of G — S.
Let = be a vertex of S, say x = 21 ... 2. By Remark 2.1, z is adjacent to at least a vertex w in C; and a vertex
y in Co. Without loss of generality, we let w = zx41... 201 and y = 2g41 ... Zok—122k+1 = w%f“.

Each component of G — .S contains at least two adjacent vertices. We let v be the vertex adjacent to w in C

and u be the vertex adjacent to y in Cy. Since v is a neighbour of w which is different from z, then zog41 is

one of the entries of v and the remaining k — 1 entries of v are to be chosen from the set {z1, ..., z;}. Without
loss of generality, let v = 2o ... 2 20K41 = m%kH. Similarly, we note that zs; must be one of the entries of v and
that the remaining k — 1 entries of u are to be chosen from the set {z1,..., zr}. Hence, there are two separate

cases to consider, depending on whether |[uNv| =k —1 or [uNwv| =k — 2. In the sequel, we consider each case
separately and construct 2k internally vertex-disjoint paths between the vertices of C; and the vertices of Cy,
thus showing that |S| > 2k.
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Case 1. [unwv| =k — 1, in which case u = 2?*. Consider the following paths:
(1. 1) we T~y
( wwx ~why ~ Pk ~y, foralli€ {2,...,k}

UN’LU le w;—ﬁ:HNu, forall je {k+1,...,2k—1}.

Case 2. [uNv| =k —2, in which case u = 22* for any i € {2,...,k}, say u = x3*. Consider the following paths:

2.2) w~ x2P wl, ~x?F oy, foralli € {3,.. .k}
2.3) v~wl ~at oy

2.4) w~ay T~ wd, ~u

9 1.3 12k+1 5,2k 2,2k+1

5) v~ w;

~T Wy Ay Wy ~u, forall j € {k+1,...,2k — 1}

In each of the above two cases, it can be readily checked that there are 2k paths and they are all internally
disjoint. Thus, '(G) > 2k.

Since G is regular of degree k + 1 and no two adjacent vertices share a common neighbour, then we can take
the neighbours of any two adjacent vertices a and b to form a super vertex-cut S. In order to see that G — .S
does not contain isolated vertices, suppose, for contradiction, that ¢ is an isolated vertex in G — S. This implies
that all its k£ 4+ 1 neighbours are in .S and, thus, it has at least one neighbour which is a neighbour of a and at
least another neighbour which is a neighbour of b. Thus G has a cycle of length 5. However, the girth of the odd

graph KG(2k + 1,k) is 6 for k > 3, a contradiction. Thus «'(G) < |S| = 2k and the result follows. O

4. THE SUPER-CONNECTIVITY OF THE KRONECKER DOUBLE COVER OF ODD GRAPHS

Since H(n,k) is a bipartite graph, we let V(H(n,k)) = V4 U V4 such that V3 = {v € V(H(n,k)) : |v| = k}
and Vo = {v € V(H(n,k)) : |v| =n — k}.

Let S be a minimum super vertex-cut of G = H(2k+1, k), where k > 2. By Remark 2.1, there exists a vertex
z € S having a neighbour in each component of G — S. Since the graph G is bipartite, there are two cases to
consider: either z is in V; (Lem. 4.1) or x is in V5 (Lem. 4.2).

Lemma 4.1. Let S be a minimum super vertez-cut of G = H(2k + 1, k), where k > 2. If S contains a vertex x
such that © has a neighbour in every component of G — S and x € Vy, then |S| > 2k.

Proof. Since x € Vi, then |z| = k, say © = z1...z;. Let a neighbour of z in a component C; be w and let a
neighbour of z in a component Cs be y. By definition, w and y are in V5, and z is contained in both w and y.
Thus, without loss of generality, let w =21 ... 2541 and y = 21 ... 2 2p 42 = w’gif

Since S is a super vertex-cut, the components C; and Cs are non-trivial. Thus, there is a vertex v adjacent
to w in Cy such that v € V; and, similarly, there is a vertex u adjacent to y in Cs such that v € V3. We remark
that v C w and u C y. Since the vertices v and v are different from z, then v and u contain the entries zx41
and zg19, respectively, and |uN{z1,..., 2} = [vN{z1,...,2k}] = k — 1. Without loss of generality, we let
V= 2]...25—1%k+1 = m’,j“ This implies that there are two separate cases to consider, depending on whether
|lu N —k—l or lunov|=k—2.
Case 1. [uNv| = k — 1, in which case u = 22

(1) w~z~y

w o~ T~ w2 g2 oy foralli€ {1,... k — 1}

. Consider the following paths:

vwwkwmkwwiiflwu, forall j € {k+3,...,2k+1}.
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Case 2. [unNv| = k — 2, in which case u = xf” for any i € {1,...,k — 1}. Without loss of generality, let
U= xﬁf? Consider the following paths:

21) w~z~y

(2.2) w~ 2T~ Wl b2y foralli € {1,k — 2}

(2.3) w~ T ~ w2

(2.4) v~ wZH N4$Z+2 ~yo 4

(2.5) v ~w], ~ T~ wp g~ T Nw’,:ff:fcﬂ ~u, forall j € {k+3,...,2k+1}.

In each of the above two cases, it can be readily checked that there are 2k paths and they are all internally
disjoint. Thus, |S| > 2k. O

Lemma 4.2. Let S be a minimum super vertez-cut of G = H(2k + 1, k), where k > 2. If S contains a verter x
such that x has a neighbour in every component of G — S and x € Vo, then |S| > 2k.

Proof. Since x € Va, then |z| = k+ 1, say * = 21 ... 2p+1. Let a neighbour of z in a component C; be w and let
a neighbour of z in a component Cy be y. Using a similar reasoning as in Lemma 4.1, without loss of generality,
wecanlet w=2z2;...zxand y =21 ... 25_12k+1 = w,’j“. Also, we let a vertex v be adjacent to w in Cy such that
v € V5 and, similarly, a vertex u be adjacent to y in C5 such that u € V5, noting that w C v and y C u. Thus,
without loss of generality, we let v = 21 ... zx 242, leaving us with two separate cases to consider, according to
whether [unNv| =k or [unuv| =k — 1.

Case 1. [uNv| =k, in which case u = xi”. Consider the following paths:
(1) w~z~y ,
(12) w~zy  ~w ~ap ~y, forallie {k+3,...,2k+ 1}
(1.3) v~ wi™ ~u
E+1,k+2 .
(14) v~ wf“ ~ m?“ ~ wjj; 2w, forall j e {1,...,k =1}
Case 2. [unNwv| =k — 1, in which case u = x?‘?’. Consider the following paths:

2) w~ax e~y

k+3 k+3
2.2) wzply M wp M

2.3) w~ ~wh ~ah o~y foralli € {k+4,...,2k+ 1}
2.4) v~ w2y
k41,k+3 .
2.5) v~ wf'ﬂ ~ x?+2 ~ w}”‘l ~ x?+3 ~ wj,z v, forall je{1,...,k—1}.
In each of the above two cases, it can be readily checked that there are 2k paths and they are all internally
disjoint. Thus, |S| > 2k. O

Theorem 4.3. The super-connectivity of the bipartite Kneser graph H(2k 4+ 1,k) is 2k, where k > 2.

Proof. The lower bound follows by Remark 2.1 together with Lemmas 4.1 and 4.2.

To see that the super-connectivity is at most 2k, it is sufficient to take the neighbours of two adjacent vertices
to make up a super vertex-cut S. First, we note that H(2k + 1,k) is regular of degree k + 1 and that no two
adjacent vertices share a common neighbour, implying that |S| = 2k. Also, S cannot contain all the k + 1
neighbours of any vertex in H(2k+ 1, k) — S, because H(2k+ 1, k) is a bipartite graph and S contains k vertices
from each of the two partite sets. Thus, no isolated vertices are created upon deleting S, and result follows. [J

5. CONCLUSION

From Theorems 2.2 and 2.3, it follows that the connectivity of the odd graph Oy, 1 and of its Kronecker double
cover H(2k + 1,k) is equal to k + 1. In Theorems 3.1 and 4.3 we have shown that their super-connectivity is
equal to 2k. Thus, both the family of odd graphs and the family of the Kronecker double cover of odd graphs
are super-connected.
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