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A NOTE ON THE PAPER “NECESSARY AND SUFFICIENT OPTIMALITY
CONDITIONS USING CONVEXIFACTORS FOR MATHEMATICAL PROGRAMS

WITH EQUILIBRIUM CONSTRAINTS”

Nazih Abderrazzak Gadhi*

Abstract. In this work, some counterexamples are given to refute some results in the paper by Kohli
[RAIRO:OR 53 (2019) 1617–1632]. We correct the fault in some of his results.

Mathematics Subject Classification. 90C30, 90C46, 49J52.

Received June 24, 2020. Accepted September 18, 2021.

Comment on: RAIRO-Oper. Res. 53 (2019) 1617–1632. https://doi.org/10.1051/ro/2018084

1. Introduction

Mathematical programs with equilibrium constraints have been investigated by many authors. In the paper
[8], the author investigated the following mathematical programs with equilibrium constraints

(MPEC) :

⎧⎨⎩
Minimize 𝑓(𝑥)

s.t.
{︂

𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0,

𝐺(𝑥) ≥ 0, 𝐻(𝑥) ≥ 0, 𝐺(𝑥)⊤𝐻(𝑥) = 0,

where 𝑓 : R𝑛 → R, 𝑔 : R𝑛 → R𝑚, ℎ : R𝑛 → R𝑝, 𝐺 : R𝑛 → R𝑙 and 𝐻 : R𝑛 → R𝑙. Under a nonsmooth constraint
qualification (𝜕* −𝐺𝐶𝑄) given in terms of convexifactors, the author established first order necessary optimality
condition for (MPEC). The main theorem, where the author gave necessary optimality conditions, is Theorem 4.4
of [8].

In this article, we show that necessary optimality conditions given by Kohli [8] are not correct. In support
of our remarks, some counterexamples are given (see Example 3.1 and Rem. 3.3) and some reasoning mistakes
in the proof of the main result ([8], Thm. 4.4) are highlighted (see Rems. 3.2, 3.3 and 4.2). Finally, we present
corrected versions of his results. Theorem 4.5 is actually a corrected version of Theorem 4.4 in [8].

The rest of the paper is organized in this way: Section 2 contains basic definitions and preliminary material.
Counterexamples and comments are given in Section 3. Section 4 addresses our main results (corrected optimality
conditions). A conclusion is given in Section 5.
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2. Preliminaries

Throughout this section, let R𝑛 be the usual 𝑛-dimensional Euclidean space. Given a nonempty subset 𝑆 of
R𝑛, the closure, convex hull, and convex cone (including the origin) generated by 𝑆 are denoted respectively by
𝑐𝑙 𝑆, 𝑐𝑜𝑛𝑣 𝑆 and 𝑝𝑜𝑠 𝑆. The negative polar cone of 𝑆 is defined by

𝑆− := {𝑣 ∈ R𝑛 | ⟨𝑥, 𝑣⟩ ≤ 0, ∀𝑥 ∈ 𝑆}.

The contingent cone 𝑇 (𝑆, 𝑥) to 𝑆 at 𝑥 ∈ 𝑐𝑙 𝑆 is defined by

𝑇 (𝑆, 𝑥) = {𝑣 ∈ R𝑛 : ∃𝑡𝑛 ↓ 0 and ∃𝑣𝑛 → 𝑣 such that 𝑥 + 𝑡𝑛𝑣𝑛 ∈ 𝑆, ∀𝑛 ∈ N}.

Let 𝑓 : R𝑛 → R ∪ {+∞} be a given function and let 𝑥 ∈ R𝑛 where 𝑓(𝑥) is finite. The expressions

𝑓−𝑑 (𝑥, 𝑣) = lim inf
𝑡↘0

[𝑓(𝑥 + 𝑡𝑣)− 𝑓(𝑥)]/𝑡 and 𝑓+
𝑑 (𝑥, 𝑣) = lim sup

𝑡↘0
[𝑓(𝑥 + 𝑡𝑣)− 𝑓(𝑥)]/𝑡

signify, respectively, the lower and upper Dini directional derivatives of 𝑓 at 𝑥 in the direction 𝑣.

Definition 2.1 ([2]). The function 𝑓 : R𝑛 → R ∪ {+∞} is said to have an upper convexifactor 𝜕𝑢𝑓(𝑥) at 𝑥 if
𝜕𝑢𝑓(𝑥) ⊆ R𝑛 is closed and, for each 𝑣 ∈ R𝑛,

𝑓−𝑑 (𝑥, 𝑣) ≤ sup
𝑥*∈𝜕𝑢𝑓(𝑥)

⟨𝑥*, 𝑣⟩.

The function 𝑓 : R𝑛 → R∪ {+∞} is said to have an upper semiregular convexifactor 𝜕𝑢𝑠𝑓(𝑥) at 𝑥 if 𝜕𝑢𝑠𝑓(𝑥) is
an upper convexifactor at 𝑥 and, for each 𝑣 ∈ R𝑛,

𝑓+
𝑑 (𝑥, 𝑣) ≤ sup

𝑥*∈𝜕𝑢𝑠𝑓(𝑥)

⟨𝑥*, 𝑣⟩.

3. Counterexamples and comments

The following example shows that Theorem 4.4 of [8] is not correct.

Example 3.1. Consider the optimization problem (MPEC) where

𝑓(𝑥1, 𝑥2, 𝑥3) := 𝑥1 + 𝑥2 − 2𝑥3, 𝑔(𝑥1, 𝑥2, 𝑥3) := 𝑥3,

ℎ(𝑥1, 𝑥2, 𝑥3) := 0, 𝐺1(𝑥1, 𝑥2, 𝑥3) := 𝑥1, 𝐺2(𝑥1, 𝑥2, 𝑥3) := 𝑥2, 𝐻1(𝑥1, 𝑥2, 𝑥3) := 𝑥2 and 𝐻2(𝑥1, 𝑥2, 𝑥3) := 𝑥1.

On the one hand, the origin is the unique minimizer of (MPEC). On the other hand, it can be seen that
𝜕𝑢𝑠𝑓(𝑥) := {(1, 1,−2)} is a bounded upper semiregular convexifactor of 𝑓 at 𝑥 := (0, 0, 0). Moreover,

𝜕𝑢𝑔(𝑥) := {(0, 0, 1)}, 𝜕𝑢ℎ(𝑥) := {(0, 0, 0)},
𝜕𝑢𝐺1(𝑥) := {(1, 0, 0)}, 𝜕𝑢(−𝐺1)(𝑥) := {(−1, 0, 0)}, 𝜕𝑢𝐺2(𝑥) := {(0, 1, 0)}, 𝜕𝑢(−𝐺2)(𝑥) := {(0,−1, 0)},
𝜕𝑢𝐻1(𝑥) := {(0, 1, 0)}, 𝜕𝑢(−𝐻1)(𝑥) := {(0,−1, 0)}, 𝜕𝑢𝐻2(𝑥) := {(1, 0, 0)} and 𝜕𝑢(−𝐻2)(𝑥) := {(−1, 0, 0)}

are upper convexifactors of 𝑔, ℎ, 𝐺1, −𝐺1, 𝐺2, −𝐺2, 𝐻1, −𝐻1, 𝐻2 and −𝐻2 at 𝑥 respectively. Remark that
𝐵 = {1, 2}.

– The feasible set 𝐾 of (MPEC) is 𝐾 = ({0} × R+ × R−) ∪ (R+ × {0} × R−). Consequently,

𝑇 (𝐾, 𝑥) =
(︀
{0} × R+ × R−

)︀
∪
(︀
R+ × {0} × R−

)︀
and 𝑐𝑙 𝑐𝑜𝑛𝑣 𝑇 (𝐾, 𝑥) = R+ × R+ × R−.

– 𝜕* −𝐺𝐶𝑄(𝐵1, 𝐵2) holds for all (𝐵1, 𝐵2) ∈ 𝑃 (𝐵) at 𝑥.
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∙ If 𝐵1 = {1} and 𝐵2 = {2}, then 𝜕* −𝐺𝐶𝑄(𝐵1, 𝐵2) holds at 𝑥. Indeed,(︂
(𝑐𝑜𝑛𝑣 𝜕𝑢𝑔(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢ℎ(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐺2(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺2)(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐻1(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻1)(𝑥))

⋃︀
𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺1)(𝑥)

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻2)(𝑥))

)︂−
= R+ × {0} × R−.

∙ If 𝐵1 = {2} and 𝐵2 = {1}, then 𝜕* −𝐺𝐶𝑄(𝐵1, 𝐵2) holds at 𝑥. Indeed,(︂
(𝑐𝑜𝑛𝑣 𝜕𝑢𝑔(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢ℎ(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐺1(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺1)(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐻2(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻2)(𝑥))

⋃︀
𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺2)(𝑥)

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻1)(𝑥))

)︂−
= {0} × R+ × R−.

∙ If 𝐵1 = ∅ and 𝐵2 = {1, 2}, then 𝜕* −𝐺𝐶𝑄(𝐵1, 𝐵2) holds at 𝑥. Indeed,(︂
(𝑐𝑜𝑛𝑣 𝜕𝑢𝑔(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢ℎ(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐺1(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺1)(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐺2(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺2)(𝑥))

⋃︀
𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻1)(𝑥)

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻2)(𝑥))

)︂−
= {0} × {0} × R−.

∙ If 𝐵1 = {1, 2} and 𝐵2 = ∅, then 𝜕* −𝐺𝐶𝑄(𝐵1, 𝐵2) holds at 𝑥. Indeed,(︂
(𝑐𝑜𝑛𝑣 𝜕𝑢𝑔(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢ℎ(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐻1(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻1)(𝑥))

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢𝐻2(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻2)(𝑥))

⋃︀
𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺1)(𝑥)

⋃︀
(𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺2)(𝑥))

)︂−
= {0} × {0} × R−.

– 𝜕* −𝐺𝐶𝑄 holds at 𝑥. Indeed,⎛⎜⎝ (𝑐𝑜𝑛𝑣 𝜕𝑢𝑔(𝑥))
⋃︀

(𝑐𝑜𝑛𝑣 𝜕𝑢ℎ(𝑥))
⋃︀

(𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺1)(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺2)(𝑥))
⋃︀

(𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻1)(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻2)(𝑥))

⎞⎟⎠
−

= R+ × R+ × R− ⊆ 𝑐𝑙 𝑐𝑜𝑛𝑣 𝑇 (𝐾, 𝑥).

– Observe that all hypotheses of Theorem 4.4 in [8] are satisfied, but 𝑥 is not a 𝜕*-strong stationary point as
defined by Kohli ([8], Def. 4.1). Indeed, if there exists a vector 0 ̸=

(︀
𝜆𝑔, 𝜆ℎ, 𝜆𝐺, 𝜆𝐻 , 𝜇𝐺, 𝜇𝐻

)︀
∈ R×R×R2 ×

R2 × R2 × R2 such that

𝜆𝑔, 𝜆ℎ, 𝜆𝐺
1 , 𝜆𝐺

2 , 𝜆𝐻
1 , 𝜆𝐻

2 , 𝜇𝐺
1 , 𝜇𝐺

2 , 𝜇𝐻
1 , 𝜇𝐻

2 ≥ 0, (3.1)

𝜆𝑔 + 𝜆ℎ + 𝜆𝐺
1 + 𝜆𝐺

2 + 𝜆𝐻
1 + 𝜆𝐻

2 + 𝜇𝐺
1 + 𝜇𝐺

2 + 𝜇𝐻
1 + 𝜇𝐻

2 = 1 (3.2)

and

0 ∈ 𝑐𝑙

⎡⎢⎣ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠𝑓(𝑥) + 𝜆𝑔 𝑐𝑜𝑛𝑣 𝜕𝑢𝑔(𝑥) + 𝜆ℎ 𝑐𝑜𝑛𝑣 𝜕𝑢ℎ(𝑥) + 𝜆𝐺
1 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺1)(𝑥)

+𝜆𝐺
2 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺2)(𝑥) + 𝜆𝐻

1 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻1)(𝑥) + 𝜆𝐻
2 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻2)(𝑥)

+𝜇𝐺
1 𝑐𝑜𝑛𝑣 𝜕𝑢𝐺1(𝑥) + 𝜇𝐻

1 𝑐𝑜𝑛𝑣 𝜕𝑢𝐻1(𝑥) + 𝜇𝐺
2 𝑐𝑜𝑛𝑣 𝜕𝑢𝐺2(𝑥) + 𝜇𝐻

2 𝑐𝑜𝑛𝑣 𝜕𝑢𝐻2(𝑥)

⎤⎥⎦
we get ⎛⎜⎝0

0
0

⎞⎟⎠ ∈ 𝑐𝑙

⎧⎪⎨⎪⎩
⎛⎜⎝1− 𝜆𝐺

1 − 𝜆𝐻
2 + 𝜇𝐺

1 + 𝜇𝐻
2

1− 𝜆𝐺
2 − 𝜆𝐻

1 + 𝜇𝐻
1 + 𝜇𝐺

2

−2 + 𝜆𝑔

⎞⎟⎠
⎫⎪⎬⎪⎭.

Then, ⎧⎪⎨⎪⎩
0 = 1− 𝜆𝐺

1 − 𝜆𝐻
2 + 𝜇𝐺

1 + 𝜇𝐻
2 ,

0 = 1− 𝜆𝐺
2 − 𝜆𝐻

1 + 𝜇𝐻
1 + 𝜇𝐺

2 ,

0 = −2 + 𝜆𝑔.

We have 𝜆𝑔 = 2 while 𝜆𝑔 ≤ 1 due to (3.1) and (3.2). A contradiction.
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Remark 3.2. Contrary to what is stated on page 1625 (line -1), it is impossible to deduce

lim
𝑘→∞

⎡⎣ ∑︁
𝑖∈𝐼(𝑥)

𝜆𝑔
𝑖𝑘 +

𝑝∑︁
𝑖=1

𝜆ℎ
𝑖𝑘 +

∑︁
𝑖∈𝐴∪𝐵1∪𝐵2

𝜆𝐺
𝑖𝑘 +

∑︁
𝑖∈𝐷∪𝐵1∪𝐵2

𝜆𝐻
𝑖𝑘 +

∑︁
𝑖∈𝐴∪𝐵2

𝜇𝐺
𝑖𝑘 +

∑︁
𝑖∈𝐷∪𝐵1

𝜇𝐻
𝑖𝑘

⎤⎦ := 1. (3.3)

The author did not pay attention to the cone that precedes the convex hull in the previous formula (see line-6
on page 1625). This error has seriously impacted the remaining of the proof of Theorem 4.4 from [8]. Since (3.3)
is an essential part of the definition of the 𝜕*-strong stationarity property, Theorem 4.4 of [8] is also not correct.
Notice that the boundedness of the sequence of the multipliers is neither acquired nor insured.

Remark 3.3. The main result ([8], Thm. 4.4), is based on Lemma 2.3 of [8]. However, this latter ([8], Lem. 2.3)
is clearly incorrect, as setting

𝐴 :=
{︀

(𝑥, 𝑦) ∈ R2 : 𝑥 < 0, 𝑦 < 0
}︀
∪ {(0, 0)} and 𝐵 := {(1, 0)}

yields a simple counterexample. Unfortunately, this error impacted ([8], Thm. 4.4) and forced the author to add
useless and cumbersome closures and convex hulls.

The following result is a corrected version of Lemma 2.3 from [8]. Being standard, the proof has been omitted.

Lemma 3.4. Let ℬ a nonempty, convex and compact set and 𝒜 be a convex cone. If

sup
𝑣∈ℬ

⟨𝑣, 𝑑⟩ ≥ 0, for all 𝑑 ∈ 𝒜−

then 0 ∈ ℬ + 𝑐𝑙𝒜.

4. Optimality conditions

In the following definition, we recall the generalized alternatively stationarity concept given by Ardali et al.
([1], Def. 4.3).

Definition 4.1 ([1]). A feasible point 𝑥 of MPEC is said to be a generalized alternatively stationary point if
there exists a vector

(︀
𝜆𝑔, 𝜆ℎ, 𝜇ℎ, 𝜆𝐺, 𝜆𝐻 , 𝜇𝐺, 𝜇𝐻

)︀
∈ R𝑚 × R2𝑝 × R2𝑙 × R2𝑙 such that

0 ∈

⎡⎢⎢⎣ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠𝑓(𝑥) +
𝑚∑︀

𝑖=1

𝜆𝑔
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢𝑔𝑖(𝑥) +

∑︀
𝑖∈𝐼′

𝜇ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢ℎ𝑖(𝑥) +

∑︀
𝑖∈𝐼′

𝜆ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢(−ℎ𝑖)(𝑥) +

𝑙∑︀
𝑖=1

𝜆𝐺
𝑖

×𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺𝑖)(𝑥) +
𝑙∑︀

𝑖=1

𝜆𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻𝑖)(𝑥) +

𝑙∑︀
𝑖=1

𝜇𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢𝐺𝑖(𝑥) +

𝑙∑︀
𝑖=1

𝜇𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢𝐻𝑖(𝑥)

⎤⎥⎥⎦ (4.1)

with
𝜆𝑔

𝑖 𝑔𝑖(𝑥) = 0, ∀𝑖 ∈ 𝐼 (4.2)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜇𝐺
𝑖 = 0 or 𝜇𝐻

𝑖 = 0, ∀𝑖 ∈ 𝐵,

𝜆𝐺
𝑖 = 0, 𝜇𝐺

𝑖 = 0, ∀𝑖 ∈ 𝐷,

𝜆𝐻
𝑖 = 0, 𝜇𝐻

𝑖 = 0, ∀𝑖 ∈ 𝐴,

𝜆𝐺
𝑖 , 𝜆𝐻

𝑖 , 𝜇𝐺
𝑖 , 𝜇𝐻

𝑖 ≥ 0, ∀𝑖 ∈ {1, . . . , 𝑙},
𝜆𝑔

𝑖 ≥ 0, ∀𝑖 ∈ 𝐼 = {1, . . . ,𝑚}, and 𝜆ℎ
𝑖 ≥ 0, 𝜇ℎ

𝑖 ≥ 0, ∀𝑖 ∈ 𝐼 ′ = {1, . . . , 𝑝}.

(4.3)

Here,
𝐴 := {𝑖 ∈ {1, . . . , 𝑙} : 𝐺𝑖(𝑥) = 0, 𝐻𝑖(𝑥) > 0},
𝐵 := {𝑖 ∈ {1, . . . , 𝑙} : 𝐺𝑖(𝑥) = 0, 𝐻𝑖(𝑥) = 0},
𝐷 := {𝑖 ∈ {1, . . . , 𝑙} : 𝐺𝑖(𝑥) > 0, 𝐻𝑖(𝑥) = 0}.
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Remark 4.2. Contrary to Definition 10 of [8],

𝑚∑︁
𝑖=1

𝜆𝑔
𝑖 +

𝑝∑︁
𝑖=1

𝜆ℎ
𝑖 +

𝑙∑︁
𝑖=1

𝜆𝐺
𝑖 +

𝑙∑︁
𝑖=1

𝜆𝐻
𝑖 +

𝑙∑︁
𝑖=1

𝜇𝐺
𝑖 +

𝑙∑︁
𝑖=1

𝜇𝐻
𝑖 = 1

is not an integral part of Definition 4.1. It is this equality that distorted Kohli’s result. Notice that Remark 4.2
of [8] is not correct since condition for the sum of multipliers does not exist in [4, 6, 10].

Remark 4.3. Notice that if all the functions are differentiable and the upper convexifactor is replaced by
the upper regular convexifactor in the above stationary notion, then this notion reduces to the A-stationary
condition given by Flegel and Kanzow [6] and by Flegel [3].

We shall need the following nonsmooth constraint qualification.

Definition 4.4. Let 𝑥 ∈ 𝐾 and (𝐵1, 𝐵2) be a partition of 𝐵 ̸= ∅. Suppose that 𝑔𝑖, 𝑖 ∈ 𝐼, ℎ𝑖, −ℎ𝑖, 𝑖 ∈ 𝐽 ,
−𝐺𝑖, 𝐺𝑖, 𝑖 ∈ 𝐴 ∪ 𝐵, −𝐻𝑖, 𝐻𝑖, 𝑖 ∈ 𝐷 ∪ 𝐵, admit upper convexifactors 𝜕𝑢𝑔𝑖(𝑥), 𝑖 ∈ 𝐼, 𝜕𝑢ℎ𝑖(𝑥), 𝜕𝑢(−ℎ𝑖)(𝑥),
𝑖 ∈ 𝐽 , 𝜕𝑢(−𝐺𝑖)(𝑥), 𝜕𝑢𝐺𝑖(𝑥), 𝑖 ∈ 𝐴 ∪ 𝐵, 𝜕𝑢(−𝐻𝑖)(𝑥), 𝜕𝑢𝐻𝑖(𝑥), 𝑖 ∈ 𝐷 ∪ 𝐵, respectively at 𝑥. We say that
𝜕* −𝐴𝐶𝑄(𝐵1, 𝐵2) holds at 𝑥 if

𝒜− ⊆ 𝑐𝑙 𝑐𝑜𝑛𝑣(𝑇 (𝐾, 𝑥)),

where 𝐾 is the feasible set of (MPEC) and

𝒜 :=

⎛⎝ ⋃︁
𝑖∈𝐼(𝑥)

𝑐𝑜𝑛𝑣 𝜕𝑢𝑔𝑖(𝑥)

⎞⎠ ∪

(︃⋃︁
𝑖∈𝐼′

𝑐𝑜𝑛𝑣 𝜕𝑢ℎ𝑖(𝑥)

)︃
∪

(︃⋃︁
𝑖∈𝐼′

𝑐𝑜𝑛𝑣 𝜕𝑢(−ℎ𝑖)(𝑥)

)︃

∪

(︃ ⋃︁
𝑖∈𝐴∪𝐵2

(𝑐𝑜𝑛𝑣 𝜕𝑢𝐺𝑖(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺𝑖)(𝑥))

)︃
∪

(︃ ⋃︁
𝑖∈𝐷∪𝐵1

(𝑐𝑜𝑛𝑣 𝜕𝑢𝐻𝑖(𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻𝑖)(𝑥))

)︃

∪

(︃ ⋃︁
𝑖∈𝐵1

𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺𝑖)(𝑥)

)︃
∪

(︃ ⋃︁
𝑖∈𝐵2

𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻𝑖)(𝑥)

)︃
.

The following result is the corrected version of Theorem 4.4 from [8].

Theorem 4.5. Let 𝑥 be a local optimal solution of MPEC. Assume that 𝑓 is locally Lipschitz and admits a
bounded upper semiregular convexifactor 𝜕𝑢𝑠𝑓(𝑥) at 𝑥. Let 𝑔𝑖, 𝑖 ∈ 𝐼, −ℎ𝑖, ℎ𝑖, 𝑖 ∈ 𝐼 ′, −𝐺𝑖, 𝐺𝑖, 𝑖 ∈ 𝐴 ∪𝐵, −𝐻𝑖,
𝐻𝑖, 𝑖 ∈ 𝐷 ∪ 𝐵, admit upper convexifactors 𝜕𝑢𝑔𝑖(𝑥), 𝑖 ∈ 𝐼, 𝜕𝑢(−ℎ𝑖)(𝑥), 𝜕𝑢ℎ𝑖(𝑥), 𝑖 ∈ 𝐼 ′, 𝜕𝑢(−𝐺𝑖)(𝑥), 𝜕𝑢𝐺𝑖(𝑥),
𝑖 ∈ 𝐴 ∪ 𝐵, 𝜕𝑢(−𝐻𝑖)(𝑥), 𝜕𝑢𝐻𝑖(𝑥), 𝑖 ∈ 𝐷 ∪ 𝐵, respectively at 𝑥. Suppose that 𝑝𝑜𝑠 𝒜 is closed and that there
exists a partition (𝐵1, 𝐵2) of 𝐵 such that 𝜕* − 𝐴𝐶𝑄(𝐵1, 𝐵2) holds at 𝑥. Then, 𝑥 is a generalized alternatively
stationary point.

Proof. The beginning of the proof of Theorem 4.4 from [8] remains correct. However, from line 6 on page 1624
until the end of the proof, the argument should be corrected as the following.

sup
𝜂∈𝑐𝑜𝑛𝑣𝜕𝑢𝑠𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, for all 𝑣 ∈ 𝒜−.

– Since 𝒜 ⊆ 𝑝𝑜𝑠 𝒜, we get
sup

𝜂∈𝑐𝑜𝑛𝑣𝜕𝑢𝑠𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, for all 𝑣 ∈ (𝑝𝑜𝑠 𝒜)−.
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– Since 𝜕𝑢𝑠𝑓(𝑥) is also a closed set, 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠𝑓(𝑥) is a compact set (see [7], Thm. 1.4.3). By Lemma 3.4, we
get

0 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠𝑓(𝑥) + 𝑐𝑙(𝑝𝑜𝑠 𝒜).

∙ Since 𝑝𝑜𝑠 𝒜 is closed, we obtain
0 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠𝑓(𝑥) + 𝑝𝑜𝑠 𝒜.

Then, there exist scalars 𝜆𝑔
𝑖 ≥ 0, 𝑖 ∈ 𝐼(𝑥), 𝜇ℎ

𝑖 ≥ 0, 𝜆ℎ
𝑖 ≥ 0, 𝑖 ∈ 𝐼 ′, 𝜇𝐺

𝑖 ≥ 0, 𝑖 ∈ 𝐴 ∪ 𝐵2, 𝜆𝐺
𝑖 ≥ 0, 𝑖 ∈

𝐴 ∪𝐵, 𝜇𝐻
𝑖 ≥ 0, 𝑖 ∈ 𝐷 ∪𝐵1, and 𝜆𝐻

𝑖 ≥ 0, 𝑖 ∈ 𝐷 ∪𝐵, such that

0 ∈

⎡⎢⎢⎢⎢⎣
𝑐𝑜𝑛𝑣 𝜕𝑢𝑠𝑓(𝑥) +

∑︀
𝑖∈𝐼(𝑥)

𝜆𝑔
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢𝑔𝑖(𝑥) +

∑︀
𝑖∈𝐼′

𝜇ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢ℎ𝑖(𝑥) +

∑︀
𝑖∈𝐼′

𝜆ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢(−ℎ𝑖)(𝑥)

+
∑︀

𝑖∈𝐴∪𝐵2

𝜇𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢𝐺𝑖(𝑥) +

∑︀
𝑖∈𝐴∪𝐵

𝜆𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐺𝑖)(𝑥)

+
∑︀

𝑖∈𝐷∪𝐵1

𝜇𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢𝐻𝑖(𝑥) +

∑︀
𝑖∈𝐷∪𝐵

𝜆𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢(−𝐻𝑖)(𝑥)

⎤⎥⎥⎥⎥⎦.

∙ Setting ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜇𝐺

𝑖 = 0, ∀𝑖 ∈ 𝐷 ∪𝐵1

𝜇𝐻
𝑖 = 0, ∀𝑖 ∈ 𝐴 ∪𝐵2

𝜆𝐺
𝑖 = 0, ∀𝑖 ∈ 𝐷

𝜆𝐻
𝑖 = 0, ∀𝑖 ∈ 𝐴

we obtain (4.1), (4.2) and (4.3). The proof is then finished.

�

5. Conclusions

In the paper [8], the author investigated a mathematical programs with equilibrium constraints. The main
result, Theorem 4.4 of [8], and the lemma ([8], Lem. 2.3) on which the author is based are false. In this work,
counterexamples are given to refute Theorem 4.4 of [8] and Lemma 2.3 of [8]. Furthermore, we correct the flaws.

Acknowledgements. Our sincere acknowledgements to the anonymous referees for their insightful remarks and
suggestions.
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