A note on the paper “Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming”
RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 13-22

A nonsmooth semi-infinite interval-valued vector programming problem is solved in the paper by Jennane et al. (RAIRO:OR 55 (2021) 1–11.). The necessary optimality condition obtained by the authors, as well as its proof, is false. Some counterexamples are given to call into question some results on which the main result (Jennane et al. [6] Thm. 4.5) is based. For the convenience of the reader, we correct the faulty in those results, propose a correct formulation of Theorem 4.5, and give also a short proof.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020107
Classification : 58E35, 90C46, 90C29, 49J52
Keywords: Convexifactor, constraint qualifications, interval-valued functions, optimality conditions
@article{RO_2021__55_1_13_0,
     author = {Gadhi, Nazih Abderrazzak and Ichatouhane, Aissam},
     title = {A note on the paper {{\textquotedblleft}Optimality} conditions for nonsmooth interval-valued and multiobjective semi-infinite programming{\textquotedblright}},
     journal = {RAIRO. Operations Research},
     pages = {13--22},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/ro/2020107},
     mrnumber = {4223882},
     zbl = {1468.49014},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020107/}
}
TY  - JOUR
AU  - Gadhi, Nazih Abderrazzak
AU  - Ichatouhane, Aissam
TI  - A note on the paper “Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming”
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 13
EP  - 22
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020107/
DO  - 10.1051/ro/2020107
LA  - en
ID  - RO_2021__55_1_13_0
ER  - 
%0 Journal Article
%A Gadhi, Nazih Abderrazzak
%A Ichatouhane, Aissam
%T A note on the paper “Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming”
%J RAIRO. Operations Research
%D 2021
%P 13-22
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020107/
%R 10.1051/ro/2020107
%G en
%F RO_2021__55_1_13_0
Gadhi, Nazih Abderrazzak; Ichatouhane, Aissam. A note on the paper “Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming”. RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 13-22. doi: 10.1051/ro/2020107

[1] A. K. Bhurjee and G. Panda, Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243 (2016) 335–348. | MR | Zbl | DOI

[2] Y. Chalco-Cano, W. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim. Decis. Making 12 (2013) 305–322. | MR | Zbl | DOI

[3] J. Dutta and S. Chandra, Convexifactors, generalized convexity, and optimality conditions. J. Optim. Theory App. 113 (2002) 41–64. | MR | Zbl | DOI

[4] G. M. Ewing, Sufficient conditions for global minima of suitably convex functionals from variational and control theory. SIAM Rev. 19 (1977) 202–220. | MR | Zbl | DOI

[5] A. Jayswal, I. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011) 4119–4127. | MR | Zbl

[6] M. Jennane, E. Kalmoun and L. Lafhim, Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming. RAIRO:OR 55 (2021) 1–11. | MR | Zbl | Numdam | DOI

[7] V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexifactors. J. Optim. Theory App. 101 (1999) 599–621. | MR | Zbl | DOI

[8] A. Kabgani and M. Soleimani-Damaneh, Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semiinfinite multiobjective optimization using convexificators. Optimization 67 (2017) 217–235. | MR | Zbl | DOI

[9] S. Kaur, Theoretical studies in mathematical programming. Ph.D. thesis. University of Delhi (1983).

[10] H.-C. Wu, On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008) 299–316. | MR | Zbl | DOI

Cité par Sources :