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A NOTE ON THE PAPER “OPTIMALITY CONDITIONS FOR NONSMOOTH
INTERVAL-VALUED AND MULTIOBJECTIVE SEMI-INFINITE

PROGRAMMING”

Nazih Abderrazzak Gadhi and Aissam Ichatouhane∗

Abstract. A nonsmooth semi-infinite interval-valued vector programming problem is solved in the
paper by Jennane et al. (RAIRO:OR 55 (2021) 1–11.). The necessary optimality condition obtained
by the authors, as well as its proof, is false. Some counterexamples are given to call into question some
results on which the main result (Jennane et al. [6] Thm. 4.5) is based. For the convenience of the
reader, we correct the faulty in those results, propose a correct formulation of Theorem 4.5, and give
also a short proof.
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1. Introduction

Optimization problems are significant since they are applied to many research fields. If the coefficients of
objective and constraint functions are taken as closed intervals, we obtain interval-valued optimization problems.
These problems may provide the possibility for a different choice that will address uncertainty in optimization.
Optimality conditions and duality results for interval-valued nonlinear programming problems are studied by
many researchers [1,2,5,6,8,10]. In the paper [6], Jennane et al. investigated the following semi-infinite interval-
valued vector program

(2) :
{

Min {F (x) = (F1 (x) , . . . , Fp (x)) : x ∈ Ω} ,
Ω = {x ∈ Rn : Gt (x) ≤LU At, ∀t ∈ T}

where T is an arbitrary (possibly infinite) index set, At =
[
AL

t , A
U
t

]
⊆ R is a closed interval for all t ∈ T,

Fk =
[
FL

k , F
U
k

]
and Gt =

[
GL

t , G
U
t

]
are interval-valued functions defined on Rn for all k ∈ I := {1, . . . , p}

and t ∈ T .
Under a nonsmooth constraint qualification (ACQ) given in terms of convexifactors, the authors established

necessary optimality condition for Problem (2). The main result, Jennane et al. [6] Theorem 4.5, is based on
Lemmas 3.3 and 3.4 of [6].

In this note, we show that Jennane et al. [6] Lemmas 3.3 and 3.4 need correction. In support of our remarks,
some counterexamples are given (see Examples 3.1, 3.2 and 3.6) and some reasoning’s mistakes are highlighted
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(see Rems. 3.3 to 3.5 and 3.7). Since those intermediate lemmas are integral parts of the proof of the main result,
necessary optimality conditions obtained by the authors are, in our view, not valid. Theorem 4.6 is actually a
corrected version of Theorem 4.5 of [6].

The rest of the paper is organized in this way: Section 2 contains basic definitions and preliminary material.
Counterexamples and comments are given in Section 3. Section 4 addresses our main results (corrected optimality
conditions). A conclusion is given in Section 5.

2. Preliminaries

Throughout this paper, Rn is the usual n-dimensional Euclidean space with a norm ‖·‖. We denote by 〈·, ·〉
and Rn

+ the inner product and the non-negative orthant of Rn defined by

Rn
+ = {(x1, . . . , xn) ∈ Rn : xi ≥ 0} .

For a subset S of Rn, the sets cl S and co S stand for the closure of S and the convex hull of S, respectively.
Let S be a subset of Rn and x ∈ cl S. The negative polar cone of S is defined by

S◦ := {v ∈ Rn : 〈s, v〉 ≤ 0, ∀s ∈ S} .

The tangent and normal cones to S at x are given by

TS (x) = {v ∈ Rn : ∃tn ↓ 0 and ∃vn → v such that x+ tnvn ∈ S, ∀n ∈ N}

and
NS (x) = {ξ ∈ Rn : 〈ξ, v〉 ≤ 0, ∀v ∈ TS (x)} = TS (x)◦ .

Let I be the set of all closed and bounded intervals in R and let A =
[
aL, aU

]
∈ I and B =

[
bL, bU

]
∈ I.

In [6], Jennane et al. considered the partial ordering for intervals defined by:

– A ≤LU B iff aL ≤ bL and aU ≤ bU , with at least one strict inequality.
– A <LU B iff aL < bL and aU < bU .

Notice that A = (A1, . . . , Ap) is called an interval-valued vector if Ak =
[
aL

k , a
U
k

]
∈ I for each k ∈ I. For

two interval-valued vectors A = (A1, . . . , Ap) and B = (B1, . . . , Bp), we have:

– A ≤LU B iff Ak ≤LU Bk for each k ∈ I except at least one index for which the inequality is strict.
– A <LU B iff Ak <LU Bk for each k ∈ I.

A feasible solution x ∈ Ω is an efficient solution to Problem (2) if there exist no x ∈ Ω such that

F (x) ≤LU F (x) .

A feasible solution x ∈ Ω is a weak efficient solution to Problem (2) if there exist no x ∈ Ω such that

F (x) <LU F (x) .

Definition 2.1 ([4]). A nonempty set S ⊆ Rn is said to be locally star-shaped at x ∈ S, if corresponding to x
and each x ∈ S, there exists some scalar a (x, x) ∈ (0, 1] such that

x+ λ (x− x) ∈ S, for all λ ∈ (0, a (x, x)) .

If a (x, x) = 1 for each x ∈ S, then S is said to be star-shaped at x.

As examples of locally star-shaped sets, open sets and convex sets are locally star-shaped at each of their
elements, and cones are locally star-shaped at the origin. If S is closed and is locally star-shaped at each x ∈ S,
then S is convex [9].
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Remark 2.2 ([8]). There exist locally star-shaped sets (at some x) that are not star-shaped (at x). For example,

S = R2\
{

(x, y) ∈ R2 : y = x2 and x 6= 0
}

is locally star-shaped at x = (0, 0) and is not star-shaped at x.

Now, we recall the definitions related to convexifactors given by Jeyakumar and Luc [7] and Dutta and
Chandra [3]. Let f : Rn → R ∪ {+∞} be a given function and let x ∈ Rn where f(x) is finite. The expressions

f−d (x, v) = lim inf
t↘0

[f(x+ tv)− f(x)]/t

and
f+

d (x, v) = lim sup
t↘0

[f(x+ tv)− f(x)]/t

signify, respectively, the lower and upper Dini directional derivatives of f at x in the direction v.

Definition 2.3 ([3]). The function f : Rn → R ∪ {+∞} is said to have an upper convexifactor ∂uf(x) at x if
∂uf(x) ⊆ Rn is closed and, for each v ∈ Rn,

f−d (x, v) ≤ sup
x∗∈∂uf(x)

〈x∗, v〉.

The function f : Rn → R ∪ {+∞} is said to have an upper semiregular convexifactor (USRC) ∂usf(x) at x if
∂usf(x) is an upper convexifactor at x and, for each v ∈ Rn,

f+
d (x, v) ≤ sup

x∗∈∂usf(x)

〈x∗, v〉.

Remark 2.4 ([3]). The Clarke, Michel-Penot and Mordokhovich subdifferentials are upper semiregular con-
vexifactors of f when f is a locally Lipschitz function. However, the convex hull of an upper semiregular
convexifactor of a locally Lipschitz function may be strictly contained in both the Clarke and the Michel-Penot
subdifferentials.

3. Counterexamples and comments

The following examples show that Lemma 3.3 of [6] is not correct.

Example 3.1. Consider the optimization Problem (2) where

T := N, GL
t (x) := −x2 − 1

t
, GU

t (x) := x2 +
1
t
, AL

t := −1
t

and AU
t :=

1
t
, ∀t ∈ T.

– On the one hand, Ω = ∅. Indeed, since

x ∈ Ω⇐⇒
(
GL

t (x) ≤ AL
t and GU

t (x) < AU
t

)
or
(
GL

t (x) < AL
t and GU

t (x) ≤ AU
t

)
, for all t ∈ T

we get

x ∈ Ω⇐⇒
(
−x2 − 1

t
≤ −1

t
and x2 +

1
t
<

1
t

)
or
(
−x2 − 1

t
< −1

t
and x2 +

1
t
≤ 1
t

)
, for all t ∈ T.

Then,
x ∈ Ω⇐⇒

(
−x2 ≤ 0 and x2 < 0

)
or
(
−x2 < 0 and x2 ≤ 0

)
.

Consequently,
x ∈ Ω⇐⇒

(
−x2 < 0 and x2 ≤ 0

)
⇐⇒ (x 6= 0 and x = 0) .

Finally, Ω = ∅.
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– On the other hand, since

gt (x) := max
(
GL

t (x)−AL
t , G

U
t (x)−AU

t

)
, ∀t ∈ T,

we have
gt (x) = max

(
−x2, x2

)
= x2, ∀t ∈ T.

Consequently,
{x ∈ R : gt (x) ≤ 0, ∀t ∈ T} = {0} .

Clearly, the feasible set of Problem (2) is not equal to {x ∈ R : gt (x) ≤ 0, ∀t ∈ T}.

Even the example provided by the authors in Section 6 shows that Lemma 3.3 of [6] is not correct.

Example 3.2. Consider the optimization Problem (2) where

T := [−1, 1] , GL
t (x) := tx1 − x2, G

U
t (x) := tx1 − x2 + 1, AL

t (x) := 0 and AU
t (x) := 1, ∀t ∈ T.

– On the one hand, since
x ∈ Ω⇐⇒ tx1 − x2 ≤ 0 and tx1 − x2 < 0, ∀t ∈ T,

we obtain
Ω =

{
(x1, x2) ∈ R2 : x2 > |x1|

}
.

– On the other hand, since
gt (x) = tx1 − x2, ∀t ∈ T,

we have
{x ∈ R : gt (x) ≤ 0, ∀t ∈ T} =

{
(x1, x2) ∈ R2 : x2 ≥ |x1|

}
.

Clearly, the feasible set of Problem (2) is not equal to {x ∈ R : gt (x) ≤ 0, ∀t ∈ T}. Notice that (0, 0) /∈ Ω
while (0, 0) ∈ {x ∈ R : gt (x) ≤ 0, ∀t ∈ T}.

Remark 3.3. The feasible set of Problem (2) may be strictly included in {x ∈ R : gt (x) ≤ 0, ∀t ∈ T}. Conse-
quently, the set of weak efficient solutions of (2) is not necessarily equal to the set of weak minima of

(4) :

{
Min

{
f (x) = (f1 (x) , f2 (x)) : x ∈ Ω̃

}
,

Ω̃ = {x ∈ Rn : gt (x) ≤ 0, ∀t ∈ T}

where
x ∈ Ω, f1 (x) := max

1≤k≤p

(
FL

k (x)− FL
k (x)

)
and f2 (x) := max

1≤k≤p

(
FU

k (x)− FU
k (x)

)
. (3.1)

This error has impacted Jennane et al. [6] Lemma 3.4 and Theorem 4.5 which are accordingly false too.

Remark 3.4. In Lemma 3.4 [6] , the inclusion

{weak minima of Problem (4)} ⊆ {weak efficient solutions of Problem (2)}

is not logical and, therefore, lacks validity.

– The structure of Problem (4) requires that x be already a weak efficient solution of Problem (2).
– Since Problem (4) depends closely on weak efficient solutions of Problem (2) , equality between the set of

weak efficient solutions of Problem (2) and that of weak minima of Problem (4) is not logical.
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Remark 3.5. In itself, the Abadie constraint qualification does not necessarily ensure the second part of
Remark 4.3 from [6]; i.e.

NΩ (x) = cl cone

 ⋃
t∈T (x)

co (∂usgt (x))


where

T (x) := {t ∈ T : gt (x) = 0} .

Kabgani and Soleimani-damaneh [8] proved the last equality under the closedness of the set

cone

( ⋃
t∈T (x)

∂usgt (x)

)
. For more details, see Theorem 3.3 of [8]. See also Summary of Section 3 from [8].

The following example shows that the set cone

( ⋃
t∈T (x)

∂usgt (x)

)
is not necessarily closed even if the Abadie

constraint qualification is satisfied.

Example 3.6. Let x = (0, 0) and T := [−1, 1[. Let

gt (x1, x2) := tx1 − x2, ∀t ∈ T

and
Ω =

{
(x1, x2) ∈ R2 : gt (x1, x2) ≤ 0, ∀t ∈ T

}
.

– On the one hand, since
x = (x1, x2) ∈ Ω⇐⇒ gt (x1, x2) ≤ 0, ∀t ∈ T

we get
x ∈ Ω⇐⇒ tx1 − x2 ≤ 0, ∀t ∈ T.

Then,
Ω =

{
(x1, x2) ∈ R2 : x2 > |x1|

}
∪
{

(x1, x2) ∈ R2 : x2 = −x1, x2 ≥ 0
}
.

Consequently,
TΩ (x) =

{
(x1, x2) ∈ R2 : x2 ≥ |x1|

}
.

Then,
NΩ (x) =

{
(x1, x2) ∈ R2 : x2 ≤ |x1|

}
.

– On the other hand, since T (x) = T and since

∂usgt (x) = {(t,−1)} , ∀t ∈ T

we obtain ⋃
t∈T (x)

∂usgt (x) = T × {−1} .

Consequently,  ⋃
t∈T (x)

∂usgt (x)

◦ = Ω

and the Abadie constraint qualification holds at x.
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– Since

cone

 ⋃
t∈T (x)

co (∂usgt (x))

 =
{

(x1, x2) ∈ R2 : x2 < − |x1|
}
∪
{

(x1, x2) ∈ R2 : x2 = x1, x2 ≤ 0
}

we deduce that cone

( ⋃
t∈T (x)

co (∂usgt (x))

)
is not closed.

Remark 3.7. The example illustrating Theorem 4.5 of [6] is not correct. Since x = (0, 0) is not a feasible
solution of Problem (11) of [6] (see Example 3.2), neither x is a weak efficient solution of (11) nor Ω is locally
star-shaped at x.

4. Optimality conditions

Let x, x ∈ Ω and let t ∈ T . Consider the functions

gL
t (x) := GL

t (x)−AL
t , g

U
t (x) := GU

t (x)−AU
t and gt (x) := max

(
gL

t (x) , gU
t (x)

)
. (4.1)

We shall need the following assumptions.

– Assumption 1
The functions f1 and f2 defined in (3.1) have USRCs at x, respectively as

∂usf1 (x) ⊆ co

 ⋃
k∈IL(x)

co
(
∂usFL

k (x)
) and ∂usf2 (x) ⊆ co

 ⋃
k∈IU (x)

co
(
∂usFU

k (x)
) ,

where
IL (x) =

{
k ∈ I : FL

k (x) = f1 (x)
}

and IU (x) =
{
k ∈ I : FU

k (x) = f2 (x)
}
.

– Assumption 2
For all t ∈ T, the function gt defined in (4.1) has an USRC at x such that

∂usgt (x) ⊆ co
(
∂usGL

t (x) , ∂usGU
t (x)

)
.

– Assumption 3
TL (x) ∩ TU (x) = ∅, ∀x ∈ Ω̃,

where
Ω̃ :=

{
x ∈ Rn : gL

t (x) ≤ 0, gU
t (x) ≤ 0, ∀t ∈ T

}
and

TL (x) =
{
t ∈ T : gL

t (x) = 0
}

and TU (x) =
{
t ∈ T : gU

t (x) = 0
}
. (4.2)

– Assumption 4
The convex cone generated by

Γ (x) :=
⋃

t∈T (x)

∂usgt (x)

is closed.
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Example 4.1. Let X = R,

T := [0, 2] , GL
t (x) := −2x, GU

t (x) := x2 − tx+ 2 + t, AL
t (x) := 2 and AU

t (x) := 2 + t.

Since
gL

t (x) := −2x− 2 and gU
t (x) := x2 − tx

we have

TL (x) =
{
T if x = −1
∅ if x 6= −1 and TU (x) =

{
T if x = 0 or x = t
∅ otherwise .

Since
Ω̃ = {x ∈ R : gt (x) ≤ 0, ∀t ∈ T} = {0}

we deduce that
TL (x) ∩ TU (x) = ∅, ∀x ∈ Ω̃

which means that Assumption 3 is satisfied.

The following result is a corrected version of Lemma 3.3 of [6].

Lemma 4.2. Assume that Assumption 3 is fulfilled. Then, the feasible set Ω of Problem (2) is equal to

Ω̃ = {x ∈ Rn : gt (x) ≤ 0, ∀t ∈ T} .

Proof. Let x ∈ Rn and t ∈ T . Since

Gt (x) ≤LU At ⇐⇒

GL
t (x)−AL

t ≤ 0,
GU

t (x)−AU
t ≤ 0,(

GL
t (x)−AL

t , G
U
t (x)−AU

t

)
6= (0, 0) ,

we have

Gt (x) ≤LU At ⇐⇒

 gL
t (x) ≤ 0,
gU

t (x) ≤ 0,(
gL

t (x) , gU
t (x)

)
6= (0, 0) .

Assumption 3 implies

Gt (x) ≤LU At ⇐⇒
{
gL

t (x) ≤ 0,
gU

t (x) ≤ 0. ⇐⇒ gt (x) ≤ 0.

�

The following result is a corrected version of Lemma 3.4 of [6].

Lemma 4.3. Suppose that Assumption 3 is fulfilled and that x ∈ Ω is a weak efficient solution of Problem (2).
Then, x is a weak efficient solution of Problem (4).

Proof. Let x ∈ Ω be a weak efficient solution of Problem (2).

– By Lemma 4.2, using Assumption 3, we have

Ω = {x ∈ Rn : gt (x) ≤ 0, ∀t ∈ T} .

Consequently, x is a weak efficient solution of the interval-valued vector program

(Q) :
{

Min {F (x) = (F1 (x) , . . . , Fp (x)) : x ∈ Ω} ,
Ω = {x ∈ Rn : gt (x) ≤ 0, ∀t ∈ T} .
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– By contrary, suppose that x is not a weak efficient solution of (4). Then, we can find x ∈ Ω such that

f1 (x) < f1 (x) and f2 (x) < f2 (x) .

Since f1 (x) = f2 (x) = 0, we get

FL
k (x)− FL

k (x) < 0 and FU
k (x)− FU

k (x) < 0, ∀k ∈ I.

Then,
Fk (x) <LU Fk (x) , ∀k ∈ I.

Thus,
F (x) <LU F (x) .

Consequently, x is not a weak efficient solutions of (Q) which contradicts the fact that x is a weak efficient
solution of Problem (2).

�

Definition 4.4. Let x ∈ Ω and ∂usgt (x) be an USRC of gt for any t ∈ T . We say that the Abadie Constraint
Qualification (ACQ) holds at x if

Γ (x)◦ ⊆ TΩ (x) .

The following remark is a corrected version of Remark 4.3 [6].

Remark 4.5 ([8]). Assume that Ω is locally star-shaped at x and that ACQ holds at x. Then

Γ (x)◦ = TΩ (x) .

If, in addition, cone

( ⋃
t∈T (x)

∂usgt (x)

)
is closed, we have

NΩ (x) = cl cone (Γ (x)) = cl cone

 ⋃
t∈T (x)

co (∂usgt (x))

 .

The following result is the corrected version of Theorem 4.5 from [6].

Theorem 4.6. Let Ω be locally star-shaped at x ∈ Ω, and let FL
k , F

U
k , G

L
t and GU

t , k ∈ I, t ∈ T, admit
respectively USRCs ∂usFL

k (x) , ∂usFU
k (x) , ∂usGL

t (x) and ∂usGU
t (x) at x. Suppose that ACQ holds at x, that

Assumptions 1–4 are fulfilled. If x is a weak efficient solution of Problem (2) , then there exist an index set

T ′ ⊆ T (x) with |T ′| ≤ n, α ∈ R|I
L(x)|

+ , β ∈ R|I
U (x)|

+ , µ ∈ R|T
′|

+ , γL
t ∈ R|T

′|
+ , γU

t ∈ R|T
′|

+ and λ ∈ R2
+ with

λ1 + λ2 =
∑

k∈IL(x)

αk =
∑

k∈IU (x)

βk =
∑
t∈T ′

γL
t =

∑
t∈T ′

γU
t = 1,

such that

0 ∈ cl

λ1

∑
k∈IL(x)

αk co
(
∂usFL

k (x)
)

+ λ2

∑
k∈IU (x)

βk co
(
∂usFU

k (x)
)

+
∑
t∈T ′

γL
t co

(
∂usGL

t (x)
)

+
∑
t∈T ′

γU
t co

(
∂usGU

t (x)
)]
.
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Proof. Let x ∈ Ω be a weakly efficient solution of Problem (2). By Lemma 4.3 and Assumption 3, it is also a
weak efficient solution of Problem (4). Using Theorem 4.1 of [8], we can find λ1, λ2 ≥ 0, λ1 + λ2 = 1 such that

0 ∈ cl [λ1co (∂usf1 (x)) + λ2co (∂usf2 (x)) +NΩ (x)] .

Using Assumption 1, we get

0 ∈ cl

λ1co

 ⋃
k∈IL(x)

co
(
∂usFL

k (x)
)+ λ2co

 ⋃
k∈IU (x)

co
(
∂usFU

k (x)
)+NΩ (x)

 .
Then, there exist α ∈ R|I

L(x)|
+ and β ∈ R|I

U (x)|
+ such that∑

k∈IL(x)

αk =
∑

k∈IU (x)

βk = 1

and

0 ∈ cl

λ1

∑
k∈IL(x)

αk co
(
∂usFL

k (x)
)

+ λ2

∑
k∈IU (x)

βk co
(
∂usFU

k (x)
)

+NΩ (x)

 .
In the light of Remark 4.5, if we use ACQ at x and Assumption 4, we obtain an index set T ′ and µ ∈ R|T

′|
+ such

that |T ′| ≤ n and

0 ∈ cl

λ1

∑
k∈IL(x)

αk co
(
∂usFL

k (x)
)

+ λ2

∑
k∈IU (x)

βk co
(
∂usFU

k (x)
)

+
∑
t∈T ′

µt co (∂usgt (x))

 .
Finaly, using Assumption 2 we get the desired result. �

5. Conclusions

In the paper [6], the authors investigated a semi-infinite interval-valued vector program. The main result,
Theorem 4.5 [6] and the intermediate results ([6], Lems. 3.3 and 3.4) on which the authors based their argument
are not adequate. In this work, counterexamples are given to call into question Lemmas 3.3 and 3.4 of [6].
Furthermore, we correct the flaws and give a new and short proof.

Acknowledgements. Our sincere acknowledgements to the anonymous referees for their insightful remarks and
suggestions.
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