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A NOTE ON THE PAPER “OPTIMALITY CONDITIONS FOR NONSMOOTH
INTERVAL-VALUED AND MULTIOBJECTIVE SEMI-INFINITE
PROGRAMMING”

NAzIH ABDERRAZZAK GADHI AND AISSAM ICHATOUHANE*

Abstract. A nonsmooth semi-infinite interval-valued vector programming problem is solved in the
paper by Jennane et al. (RAIRO:OR 55 (2021) 1-11.). The necessary optimality condition obtained
by the authors, as well as its proof, is false. Some counterexamples are given to call into question some
results on which the main result (Jennane et al. [6] Thm. 4.5) is based. For the convenience of the
reader, we correct the faulty in those results, propose a correct formulation of Theorem 4.5, and give
also a short proof.
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1. INTRODUCTION

Optimization problems are significant since they are applied to many research fields. If the coefficients of
objective and constraint functions are taken as closed intervals, we obtain interval-valued optimization problems.
These problems may provide the possibility for a different choice that will address uncertainty in optimization.
Optimality conditions and duality results for interval-valued nonlinear programming problems are studied by
many researchers [1,2,5,6,8,10]. In the paper [6], Jennane et al. investigated the following semi-infinite interval-
valued vector program

@) : Min {F (z) = (F1 (z), ..., Fp(x)):z € Q},
’ QZ{J)ERnIGt(l‘) SLUAt; VtET}
where T is an arbitrary (possibly infinite) index set, A; = [AtL , AV ] C R is a closed interval for all t € T,
Fy, = [F,CL, F,g] and Gy = [GtL, G?] are interval-valued functions defined on R™ for all k € I := {1, ..., p}
andteT.

Under a nonsmooth constraint qualification (ACQ) given in terms of convexifactors, the authors established
necessary optimality condition for Problem (2). The main result, Jennane et al. [6] Theorem 4.5, is based on
Lemmas 3.3 and 3.4 of [6].

In this note, we show that Jennane et al. [6] Lemmas 3.3 and 3.4 need correction. In support of our remarks,
some counterexamples are given (see Examples 3.1, 3.2 and 3.6) and some reasoning’s mistakes are highlighted
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(see Rems. 3.3 to 3.5 and 3.7). Since those intermediate lemmas are integral parts of the proof of the main result,
necessary optimality conditions obtained by the authors are, in our view, not valid. Theorem 4.6 is actually a
corrected version of Theorem 4.5 of [6].

The rest of the paper is organized in this way: Section 2 contains basic definitions and preliminary material.
Counterexamples and comments are given in Section 3. Section 4 addresses our main results (corrected optimality
conditions). A conclusion is given in Section 5.

2. PRELIMINARIES

Throughout this paper, R™ is the usual n-dimensional Euclidean space with a norm ||-||. We denote by (,-)
and R} the inner product and the non-negative orthant of R™ defined by

R} = {(z1,...,2,) €R" 1 2; > 0} .

For a subset S of R™, the sets cl S and co S stand for the closure of S and the convex hull of S, respectively.
Let S be a subset of R" and x € ¢l S. The negative polar cone of S is defined by

S :={veR":(s,v) <0, Vs € S}.
The tangent and normal cones to S at x are given by
Ts (z) ={veR":3t, |0and Jv, — v such that = + t,v, € S, Vn € N}

and
Ng(z) ={£ €R": (£,0) <0, Vv € Ts (2)} = Ts (z)°.

Let Z be the set of all closed and bounded intervals in R and let A = [aL, aU] €7 and B = [bL, bU] eT.
In [6], Jennane et al. considered the partial ordering for intervals defined by:

— A<py Biff a® <b" and oV < bY, with at least one strict inequality.
- A<y Biff a¥ < b and oV < Y.

Notice that A = (A1, ..., Ap) is called an interval-valued vector if A, = [aé, akU] € 7 for each k € I. For
two interval-valued vectors A = (A, ..., A,) and B = (By, ..., Bp), we have:

— A<py B iff Ay <py By for each k € I except at least one index for which the inequality is strict.
- A <pu B i Ayg <ru B for each k € I.

A feasible solution T € § is an efficient solution to Problem (2) if there exist no z € Q such that
F(z) <py F(T).
A feasible solution T € € is a weak efficient solution to Problem (2) if there exist no x € 2 such that
F(z)<pu F (7).

Definition 2.1 ([4]). A nonempty set S C R™ is said to be locally star-shaped at T € S, if corresponding to T
and each z € S, there exists some scalar a (T, z) € (0, 1] such that

T+ A(x—7T) €S, forall A € (0,a(T,x)).
If a (z,x) = 1 for each z € S, then S is said to be star-shaped at Z.

As examples of locally star-shaped sets, open sets and convex sets are locally star-shaped at each of their
elements, and cones are locally star-shaped at the origin. If .S is closed and is locally star-shaped at each T € S,
then S is convex [9].
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Remark 2.2 ([8]). There exist locally star-shaped sets (at some Z) that are not star-shaped (at ). For example,
S=R*{(z,y) eR*:y=2"and z # 0}
is locally star-shaped at Z = (0,0) and is not star-shaped at Z.

Now, we recall the definitions related to convexifactors given by Jeyakumar and Luc [7] and Dutta and
Chandra [3]. Let f : R — RU {+o0} be a given function and let € R™ where f(z) is finite. The expressions

fi (w,0) = liminf [f(a -+ ) = (@)1

and

fi(@,v) = lir?\syp [f(z +tv) — f(x)]/t

signify, respectively, the lower and upper Dini directional derivatives of f at x in the direction v.

Definition 2.3 ([3]). The function f : R™ — R U {+oo} is said to have an upper convexifactor 0" f(z) at x if
0" f(x) C R™ is closed and, for each v € R™,

fi(z,0) < sup (a7, v).
z*€dv f(x)

The function f : R™ — R U {400} is said to have an upper semiregular convexifactor (USRC) 9" f(x) at z if
0" f(x) is an upper convexifactor at x and, for each v € R™,

[ < swp @),
z*€eQvs f(x)

Remark 2.4 ([3]). The Clarke, Michel-Penot and Mordokhovich subdifferentials are upper semiregular con-
vexifactors of f when f is a locally Lipschitz function. However, the convex hull of an upper semiregular
convexifactor of a locally Lipschitz function may be strictly contained in both the Clarke and the Michel-Penot
subdifferentials.

3. COUNTEREXAMPLES AND COMMENTS
The following examples show that Lemma 3.3 of [6] is not correct.
Example 3.1. Consider the optimization Problem (2) where
T:=N, GF () := —2® — %, GV (x) :=2* + %, Al = —% and AV := %, vteT.
— On the one hand, Q = (). Indeed, since

€ Q<+ (G (z) <Al and Gf (z) < AY) or (G} (z) < A} and GY (z) < AY), forallt €T

we get
1 1 1 1 1 1 1 1
reEQ<—[-2?—-<-—Zanda®’+-<=-)or [-2®2—<—-Zand2®+=-< = , forallteT.
t t t t t t t t
Then,
J:EQ(z)(—xQSOandx2<0) or (—x2<0andx2§0).
Consequently,

r€Q < (-2 <0and 2” <0) < (z#0and z =0).
Finally, Q = 0.
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— On the other hand, since
gt (2) == max (Gy (z) — A}, GY (z) — AY), Vte T,
we have
g+ (x) = max (—xQ,xz) =22 VteT.

Consequently,
{reR:g(z) <0, Yt €T} ={0}.

Clearly, the feasible set of Problem (2) is not equal to {x € R: g, (x) <0, Vt € T}.
Even the example provided by the authors in Section 6 shows that Lemma 3.3 of [6] is not correct.
Example 3.2. Consider the optimization Problem (2) where
T:=[-1, 1], GF(z) :=ta; — x93, GY (z) :=tx; — x5+ 1, AL (2) :=0and AV (z):=1, Vt € T.
— On the one hand, since
r€EN<tr;—xy<0andtr; —a2 <0, VtET,

we obtain
Q= {(1’1,%2) € Rz LTy > |$1|} .

— On the other hand, since
gt (x) =tz — 29, VL ET,

we have
{xeR: g (2) <0, Vt €T} ={(21,22) € R* : 25 > |z1]}.

Clearly, the feasible set of Problem (2) is not equal to {x € R: g; () <0, Vt € T'}. Notice that (0,0) ¢ Q
while (0,0) e {x eR: g (z) <0, Vt € T}.

Remark 3.3. The feasible set of Problem (2) may be strictly included in {z € R: ¢; (z) <0, Vt € T'}. Conse-
quently, the set of weak efficient solutions of (2) is not necessarily equal to the set of weak minima of

(4) : {Mni {f(x) = (f1(2), f2 (x)):xeﬁ},
Q={reR": g (x) <0, Vt €T}
where

TeQ, f1(x):= max (B (z) — FE (@) and fo (z) = max (F (z) - FY (@) (3.1)

This error has impacted Jennane et al. [6] Lemma 3.4 and Theorem 4.5 which are accordingly false too.
Remark 3.4. In Lemma 3.4 [6] , the inclusion
{weak minima of Problem (4)} C {weak efficient solutions of Problem (2)}

is not logical and, therefore, lacks validity.

— The structure of Problem (4) requires that T be already a weak efficient solution of Problem (2).
— Since Problem (4) depends closely on weak efficient solutions of Problem (2), equality between the set of
weak efficient solutions of Problem (2) and that of weak minima of Problem (4) is not logical.
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Remark 3.5. In itself, the Abadie constraint qualification does not necessarily ensure the second part of
Remark 4.3 from [6]; i.e.

Ngq (%) = cl cone U co (0"g; (T))
teT ()

where

T(@):={teT:q (T)=0}.
Kabgani and Soleimani-damaneh [8] proved the last equality under the closedness of the set

cone < U 0"g: (x)) For more details, see Theorem 3.3 of [8]. See also Summary of Section 3 from [8].
teT (%)

The following example shows that the set cone < U 9“g (x)) is not necessarily closed even if the Abadie
teT(T)
constraint qualification is satisfied.

Example 3.6. Let T = (0,0) and T :=[—1, 1[. Let
gt (x1,22) :=twy — a9, VEET

and
Q= {(21,22) €R*: gy (x1,22) <0, VL ET}.

— On the one hand, since
= (21,22) €E V<= g (x1,22) <0, VL €T

we get
r€EN<=tr; —x2<0, VteT.
Then,
Q= {(xl,ifg) S R2 LTy > |£C1|} @] {(.’El,ifg) S RQ 1Ty = —T1, Ty > 0} .
Consequently,
Tq (f) = {($1,£E2) S R2 1Ty > |{,C1|} .
Then,

Nq (f) = {(1’1,(172) € R2 1o < |.’E1|} .

— On the other hand, since T'(Z) = T and since
0% (T) ={(t,-1)}, VteT

we obtain

U 0%g: @) =17 x{-1}.

teT (T)

Consequently,

U o“a@ ]| =0
teT(T)

and the Abadie constraint qualification holds at .
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— Since

cone U 0 (0%g: (T)) | = {(z1,22) ER?* 1 29 < — |21|} U{(z1,22) ER* : 39 = 21, 25 <0}
teT(T)

we deduce that cone [ |J co(9"™¢g:(Z)) | is not closed.
teT ()

Remark 3.7. The example illustrating Theorem 4.5 of [6] is not correct. Since T = (0,0) is not a feasible
solution of Problem (11) of [6] (see Example 3.2), neither T is a weak efficient solution of (11) nor € is locally
star-shaped at .

4. OPTIMALITY CONDITIONS

Let z, T € Q and let t € T'. Consider the functions
gF (z) == GF () — AL, ¢V (z) := GV (z) — AV and g, (z) := max (g{‘ (z), g¥ (2)). (4.1)
We shall need the following assumptions.

— Assumption 1
The functions f; and fo defined in (3.1) have USRCs at T, respectively as

9" f1 (T) C co U co (0FF (7)) | and 9™ f2 (%) C co U co (0FY (7)) |
keIl (z) keIl (z)

where
I"@={kel FFr@ =A@} and IV @) ={kel:F/ (@) =f(7)}.

— Assumption 2

For all ¢t € T, the function g; defined in (4.1) has an USRC at Z such that

0" g: (T) C co (auSGtL (), 0GY (7))
— Assumption 3
T () NTY (2) =0, Vz € Q,
where
Q= {xeR”:gtL(a:)gO, gv (z) <0, vte T}
and
TH(z)={teT: g/ (x)=0} and TV (z) = {t €T : g (z) =0} . (4.2)

— Assumption 4
The convex cone generated by

L@ := J 0" @

teT (@)

is closed.
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Example 4.1. Let X = R,

T:=10, 2], GF(z) := 22, GV (v) :==a2® —tx +2+t, Al (2):=2and AV (z):=2+1.

Since
gF () := =2z — 2 and ¢Y (z) := 2® — tx
we have
L, _ JT ifzx=-1 v,y JT ifz=0o0raxz=t
(@)= {(Z) if ¢ £ —1 and T (z) = () otherwise )
Since

Q={zreR:g(z)<0, VteT}={0}

we deduce that B
T ()N TY (2) =0, Yz € Q

which means that Assumption 3 is satisfied.
The following result is a corrected version of Lemma 3.3 of [6].
Lemma 4.2. Assume that Assumption 3 is fulfilled. Then, the feasible set Q of Problem (2) is equal to
Q={zeR": g (x) <0, VteT}.
Proof. Let x € R™ and ¢t € T'. Since
(x)) - Al <o,

G
GY (z) — AV <0,

Gt (CC) SLU At <~

we have

Assumption 3 implies

The following result is a corrected version of Lemma 3.4 of [6].

Lemma 4.3. Suppose that Assumption 3 is fulfilled and that T € Q) is a weak efficient solution of Problem (2).
Then, T is a weak efficient solution of Problem (4).

Proof. Let T € ) be a weak efficient solution of Problem (2).
— By Lemma 4.2, using Assumption 3, we have
Q={zeR": g (x) <0, VteT}.
Consequently, T is a weak efficient solution of the interval-valued vector program

Min {F (z) = (Fi(z), ..., Fp(z)) 12 € Q},
(Q):{ S{):({)mE(R}L(:g)t(l')SO, \(ﬁ);T}.6 }
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— By contrary, suppose that T is not a weak efficient solution of (4). Then, we can find x € Q such that
fi(@) < f1(z) and f2 (z) < f2 (T).
Since f1 (T) = f2 (T) =0, we get
FF(z) - FF () <0and FY (z) — FY (%) <0, Vk € I.

Then,
Fy (l‘) <ru Fy (T), VEk e I.

Thus,
F(x) <LUu F(f)

Consequently, T is not a weak efficient solutions of (@) which contradicts the fact that T is a weak efficient
solution of Problem (2).

O

Definition 4.4. Let T € Q and 9"%¢; (T) be an USRC of ¢; for any ¢t € T. We say that the Abadie Constraint
Qualification (ACQ) holds at T if
['(7)° C To (7).

The following remark is a corrected version of Remark 4.3 [6].

Remark 4.5 ([8]). Assume that € is locally star-shaped at T and that ACQ holds at Z. Then

I'@)° =T (7).

If, in addition, cone ( U 0% (:17)) is closed, we have
teT (%)

Nq (%) = cl cone (I'(Z)) = cl cone U co (0%°g; (T))
teT(T)

The following result is the corrected version of Theorem 4.5 from [6].

Theorem 4.6. Let ) be locally star-shaped at T € ), and let FkL, F,g, Gl and GV, k € I, t € T, admit
respectively USRCs O FL (z), 0" FY (), 0"GE (%) and 0GY () at T. Suppose that ACQ holds at T, that
Assumptions 1-4 are fulfilled. If T is a weak efficient solution of Problem (2), then there exist an index set

IL* IU* ’ ’ ’
T C T (z) with |[T'] <mn, aERL (x)|, BERL (w)|7 ueRLTl, vfeﬂ%f', %UERLT| and X € R with
M= D a= D =) =) =1,
kel (x) keIV (z) teT’ teT’

such that

0ecl |\ Z Qy; CO (8“SFkL (f)) + A2 Z B co (austU (f))

keIl () kEIY ()

+ Z'yt co (0™Gy (z Z’yt co (0™GY (7)) | -

teT’ teT’
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Proof. Let T € Q be a weakly efficient solution of Problem (2). By Lemma 4.3 and Assumption 3, it is also a
weak efficient solution of Problem (4). Using Theorem 4.1 of [8], we can find A1, A2 >0, A; + A2 = 1 such that

0 € cl[A1co (0" f1 (T)) + Aaco (0% f2 (T)) + Nq (T)] -
Using Assumption 1, we get

0 €cl [Arco U co (0" FL (T)) | + Aaco U co (0F (z)) | + No (T)
kell(z) keIl (z)

: 1" @) 17 @)
Then, there exist oo € R}, and g € R, such that

Z ag = Z Br=1

kel (z) kelV(z)

and

0Oecl | M Z Qg Co (8“SF,€L (T)) + A Z By co (0"FY (7)) + Nq (%)

kelk(z) keIl (z)
In the light of Remark 4.5, if we use ACQ at T and Assumption 4, we obtain an index set 7" and u € RLT ‘such
that |77] < n and
0€ecl M Z Qg €o (8“SF,€L (@) + A Z Bk co (8“SF,£J (@) + Zut co (0% gy (T))
kel (z) kelY(z) teT’
Finaly, using Assumption 2 we get the desired result. O

5. CONCLUSIONS

In the paper [6], the authors investigated a semi-infinite interval-valued vector program. The main result,
Theorem 4.5 [6] and the intermediate results ([6], Lems. 3.3 and 3.4) on which the authors based their argument
are not adequate. In this work, counterexamples are given to call into question Lemmas 3.3 and 3.4 of [6].
Furthermore, we correct the flaws and give a new and short proof.

Acknowledgements. Our sincere acknowledgements to the anonymous referees for their insightful remarks and
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