In this paper, we consider ℝd-valued integrable processes which are increasing in the convex order, i.e. ℝd-valued peacocks in our terminology. After the presentation of some examples, we show that an ℝd-valued process is a peacock if and only if it has the same one-dimensional marginals as an ℝd-valued martingale. This extends former results, obtained notably by Strassen [Ann. Math. Stat. 36 (1965) 423-439], Doob [J. Funct. Anal. 2 (1968) 207-225] and Kellerer [Math. Ann. 198 (1972) 99-122].
Keywords: convex order, martingale, 1-martingale, peacock
@article{PS_2013__17__444_0,
author = {Hirsch, Francis and Roynette, Bernard},
title = {On $\mathbb {R}^d$-valued peacocks},
journal = {ESAIM: Probability and Statistics},
pages = {444--454},
year = {2013},
publisher = {EDP Sciences},
volume = {17},
doi = {10.1051/ps/2012009},
zbl = {1291.60085},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2012009/}
}
TY - JOUR
AU - Hirsch, Francis
AU - Roynette, Bernard
TI - On $\mathbb {R}^d$-valued peacocks
JO - ESAIM: Probability and Statistics
PY - 2013
SP - 444
EP - 454
VL - 17
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ps/2012009/
DO - 10.1051/ps/2012009
LA - en
ID - PS_2013__17__444_0
ER -
Hirsch, Francis; Roynette, Bernard. On $\mathbb {R}^d$-valued peacocks. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 444-454. doi: 10.1051/ps/2012009
[1] , and , Comparaison des mesures portées par un convexe compact. Bull. Soc. Math. France 92 (1964) 435-445. | Zbl | MR | Numdam
[2] and , Probabilités et potentiel, in Théorie des martingales, Chapitres V à VIII. Hermann (1980). | Zbl | MR
[3] , Generalized sweeping-out and probability. J. Funct. Anal. 2 (1968) 207-225. | Zbl | MR
[4] and , A new proof of Kellerer's theorem. ESAIM: PS 16 (2012) 48-60. | Zbl | MR | Numdam
[5] , , and , Peacocks and associated martingales, with explicit constructions. Bocconi & Springer Series 3 (2011). | Zbl | MR
[6] , Markov-Komposition und eine Anwendung auf Martingale. Math. Ann. 198 (1972) 99-122. | Zbl | MR
[7] , Fitting martingales to given marginals. http://arxiv.org/abs/0808.2319v1 (2008).
[8] , The existence of probability measures with given marginals. Ann. Math. Stat. 36 (1965) 423-439. | Zbl | MR
Cité par Sources :






