In this paper, we present a new proof of the celebrated theorem of Kellerer, stating that every integrable process, which increases in the convex order, has the same one-dimensional marginals as a martingale. Our proof proceeds by approximations, and calls upon martingales constructed as solutions of stochastic differential equations. It relies on a uniqueness result, due to Pierre, for a Fokker-Planck equation.
Keywords: convex order, 1-martingale, peacock, Fokker-Planck equation
@article{PS_2012__16__48_0,
author = {Hirsch, Francis and Roynette, Bernard},
title = {A new proof of {Kellerer's} theorem},
journal = {ESAIM: Probability and Statistics},
pages = {48--60},
year = {2012},
publisher = {EDP Sciences},
volume = {16},
doi = {10.1051/ps/2011164},
mrnumber = {2911021},
zbl = {1277.60041},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2011164/}
}
TY - JOUR AU - Hirsch, Francis AU - Roynette, Bernard TI - A new proof of Kellerer's theorem JO - ESAIM: Probability and Statistics PY - 2012 SP - 48 EP - 60 VL - 16 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2011164/ DO - 10.1051/ps/2011164 LA - en ID - PS_2012__16__48_0 ER -
Hirsch, Francis; Roynette, Bernard. A new proof of Kellerer's theorem. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 48-60. doi: 10.1051/ps/2011164
[1] and , Probabilités et potentiel, Chapitres V à VIII, Théorie des martingales. Hermann (1980). | Zbl | MR
[2] , , and , Peacocks and associated martingales, with explicit constructions, Bocconi & Springer Series 3 (2011). | Zbl | MR
[3] , Markov-komposition und eine anwendung auf martingale. Math. Ann. 198 (1972) 99-122. | Zbl | MR
[4] , Fitting martingales to given marginals. http://arxiv.org/abs/0808.2319v1 (2008).
Cité par Sources :






