Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1-15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113-154].
@article{PS_2011__15__372_0,
author = {Voisin, Guillaume},
title = {Dislocation measure of the fragmentation of a general {L\'evy} tree},
journal = {ESAIM: Probability and Statistics},
pages = {372--389},
year = {2011},
publisher = {EDP Sciences},
volume = {15},
doi = {10.1051/ps/2010006},
mrnumber = {2870521},
zbl = {1263.60068},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2010006/}
}
TY - JOUR AU - Voisin, Guillaume TI - Dislocation measure of the fragmentation of a general Lévy tree JO - ESAIM: Probability and Statistics PY - 2011 SP - 372 EP - 389 VL - 15 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2010006/ DO - 10.1051/ps/2010006 LA - en ID - PS_2011__15__372_0 ER -
Voisin, Guillaume. Dislocation measure of the fragmentation of a general Lévy tree. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 372-389. doi: 10.1051/ps/2010006
[1] and , Fragmentation associated with Lévy processes using snake. Probab. Th. Rel. Fiel 141 (2008) 113-154. | Zbl | MR
[2] , and , Pruning a Lévy random continuum tree. preprint | MR
[3] and , Poisson snake and fragmentation. Elect. J. Probab. 7 (2002) 1-15. | Zbl | MR | EuDML
[4] , The continuum random tree II: an overview. Proc. Durham Symp. Stochastic Analysis. Cambridge univ. press edition (1990) 23-70. | Zbl | MR
[5] , The continuum random tree I. Ann. Probab. 19 (1991) 1-28. | Zbl | MR
[6] , The continuum random tree III. Ann. Probab. 21 (1993) 248-289. | Zbl | MR
[7] and , Inhomogeneous continuum trees and the entrance boundary of the additive coalescent. Probab. Th. Rel. Fields 118 (2000) 455-482. | Zbl | MR
[8] and , The standard additive coalescent. Ann. Probab. 26 (1998) 1703-1726. | Zbl | MR
[9] , Lévy processes. Cambridge University Press, Cambridge (1996). | Zbl | MR
[10] , Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 102 (2006). | Zbl | MR
[11] , Measure-valued Markov processes, in École d'été de Probabilités de Saint-Flour 1991, Lect. Notes Math. Springer Verlag, Berlin 1541 (1993) 1-260. | Zbl | MR
[12] , Height process for super-critical continuous state branching process. Markov Proc. Rel. Fields. 14 (2008) 309-326. | Zbl | MR
[13] and , Random trees, Lévy processes and spatial branching processes 281. Astérisque (2002). | Zbl | MR | Numdam
[14] and , Probabilistic and fractal aspects of Lévy trees, Probab. Th. Rel. Fields 131 (2005) 553-603. | Zbl | MR
[15] and , Growth of Lévy trees. Probab. Th. Rel. Fields 139 (2007) 313-371. | Zbl | MR
[16] , Stochastic branching processes with continuous state space. Czech. Math. J. 83 (1958) 292-312. | Zbl | MR | EuDML
[17] , The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 7 (1967) 271-288. | Zbl | MR
[18] , Spatial branching processes, random snakes and partial differential equations. Birkhäuser Verlag, Basel (1999). | Zbl | MR
[19] and , Branching processes in Lévy processes: the exploration process. Ann. Probab. 26 (1998) 213-252. | Zbl | MR
[20] , Probability measures on metric spaces. Probability and Mathematical Statistics 3, Academic, New York (1967). | Zbl | MR
Cité par Sources :






