@book{AST_2002__281__R1_0,
author = {Duquesne, Thomas and Le Gall, Jean-Fran\c{c}ois},
title = {Random trees, {L\'evy} processes and spatial branching processes},
series = {Ast\'erisque},
year = {2002},
publisher = {Soci\'et\'e math\'ematique de France},
number = {281},
mrnumber = {1954248},
zbl = {1037.60074},
language = {en},
url = {https://www.numdam.org/item/AST_2002__281__R1_0/}
}
Duquesne, Thomas; Le Gall, Jean-François. Random trees, Lévy processes and spatial branching processes. Astérisque, no. 281 (2002), 153 p. https://www.numdam.org/item/AST_2002__281__R1_0/
[1] (1991) The continuum random tree I. Ann. Probab. 19, 1-28. | MR | Zbl | DOI
[2] (1991) The continuum random tree II: An overview. In: Stochastic Analysis (M.T. Barlow, N.H. Bingham eds), pp. 23-70. Cambridge University Press, Cambridge. | MR | Zbl | DOI
[3] (1993) The continuum random tree III. Ann. Probab. 21, 248-289. | MR | Zbl | DOI
[4] , (2000) A random walk approach to Galton-Watson trees. J. Theoret. Probab. 13, 777-803. | MR | Zbl | DOI
[5] (1996) Lévy Processes. Cambridge University Press, Cambridge. | MR | Zbl
[6] (1975) Fluctuation theory in continuous time. Adv. Appl. Probab. 7, 705-766. | MR | Zbl | DOI
[7] , (1996) On distribution tails and expectations of maxima in critical branching processes. J. Appl. Probab. 33, 614-622. | MR | Zbl | DOI
[8] , (1991) Historical Processes. Memoirs Amer. Math. Soc. 454. | MR | Zbl
[9] , (1987) Probabilités et potentiels, Chapitres XII à XVI: Théorie du potentiel associée une résolvante, théorie des processus de Markov. Hermann, Paris | Zbl | MR
[10] (2001) A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab., to appear. | MR | Zbl
[11] (1975) Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 251-274. | MR | Zbl | DOI
[12] (1991) A probabilistic approach to one class of nonlinear differential equations. Probab. Th. Rel. Fields 89, 89-115. | MR | Zbl | DOI
[13] (2001) Diffusions, Superdiffusions and Partial Differential Equations. Amer. Math. Soc. Colloquium Publications, Vol. 50. Providence, 2002. | MR | Zbl
[14] , (1986) Markov Processes: Characterization and Convergence. Wiley. | MR | Zbl
[15] (2000) An Introduction to Superprocesses. University Lecture Series vol. 20. American Math. Society, Providence. | MR | Zbl
[16] (1971) An Introduction to Probability Theory and Its Applications, Vol. II, 2 sec. ed.. Wiley, New York. | MR
[17] , (1977) The structure of reduced critical Galton-Watson processes. Math. Nachr. 79, 233-241. | MR | Zbl | DOI
[18] (1995) Contour processes of random trees. In: Stochastic Partial Differential Equations (A. Etheridge ed.). London Math. Soc. Lect. Notes 216, pp. 72-96. Cambridge University Press, Cambridge. | MR | Zbl | DOI
[19] (1999) On the contour of random trees. SIAM J. Discrete Math. 12, 434-458. | MR | Zbl | DOI
[20] (1974) Asymptotic behaviour of continuous time, continuous statespace branching processes. J. Appl. Probab. 11, 669-677. | MR | Zbl | DOI
[21] (1974) On the convergence of sequence of branching processes. Ann. Probab. 2, 1027-1945. | MR | Zbl | DOI
[22] (2000) Marked excursions and random trees. Séminaire de Probabilités XXXIV. Lecture Notes Math. 1729, pp. 289-301. Springer. | MR | Zbl | EuDML | Numdam | DOI
[23] (1985) Théorèmes limites pour les processus. Lecture Notes in Math. 1117, 298-409. Springer, Berlin. | MR | Zbl
[24] , (1987) Limit Theorems for Stochastic Processes. Springer, Berlin. | MR | Zbl | DOI
[25] (1957) On solutions of . Comm. Pure Appl. Math. 10, 503-510. | MR | Zbl
[26] (1998) On the height profile of a conditioned Galton-Watson tree. To appear.
[27] (1967) The limit of a sequence of branching processes. Z. Wahrsch. verw. Gebiete 7, 271-288. | MR | Zbl | DOI
[28] (1993) A class of path-valued Markov processes and its applications to superprocesses. Probab. Th. Rel. Fields 95, 25-46. | MR | Zbl | DOI
[29] (1994) Hitting probabilities and potential theory for the Brownian path-valued process. Ann. Inst. Fourier 44, 277-306. | MR | Zbl | EuDML | Numdam | DOI
[30] (1995) The Brownian snake and solutions of in a domain. Probab. Th. Rel. Fields 102, 393-432. | MR | Zbl | DOI
[31] (1999) Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhaüser, Boston. | MR | Zbl
[32] , (1998) Branching processes in Lévy processes: The exploration process. Ann. Probab. 26, 213-252. | MR | Zbl | DOI
[33] , (1998) Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann. Probab. 26, 1407-1432. | MR | Zbl
[34] , (1995) The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23, 1719-1747. | MR | Zbl | DOI
[35] (2001) A LIFO queue in heavy traffic. Ann. Appl. Probab. 11, 301-331. | MR | Zbl | DOI
[36] , (2001) The depth first processes of Galton-Watson trees converge to the same Brownian excursion. Preprint. | MR | Zbl
[37] (1973) On a certain class of infinitely divisible distributions. Israel J. Math. 16, 1-19. | MR | Zbl | DOI
[38] (2002) Probabilistic classification and representation of positive solutions of in a domain. PhD thesis, Université Paris VI.
[39] , (1989) The branching process in a Brownian excursion. Séminaire de Probabilités XXIII. Lecture Notes Math. 1372, pp. 248-257. Springer. | MR | Zbl | EuDML | Numdam | DOI
[40] (1999) Dawson-Watanabe Superprocesses and Measure-valued Diffusions. Notes from the Ecole d'été de probabilités de Saint-Flour 1999. To appear. | MR | Zbl
[41] (1957) On the inequality . Pac. J. Math. 7, 1641-1647. | MR | Zbl
[42] (1984) Brownian local times and branching processes. Séminaire de Probabilités XVIII. Lecture Notes Math. 1059, pp. 42-55. Springer. | MR | Zbl | EuDML | Numdam
[43] , (1999) On the conditioned exit measures of super-Brownian motion. Probab. Th. Rel. Fields 115, 237-285. | MR | Zbl | DOI
[44] , (2000) Non-degenerate conditionings of the exit measures of super-Brownian motion. Stoch. Process. Appl. 87, 25-52. | MR | Zbl | DOI
[45] (1994) Asymptotic behavior of superprocesses. Stochastics Stoch. Reports 49, 239-252. | MR | Zbl | DOI
[46] (1957) Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2, 138-171. | Zbl | MR | DOI
[47] (1968) A branching process with mean one and possibly infinite variance. Z. Wahrsch. verw. Gebiete 9, 139-145. | MR | Zbl | DOI
[48] (1977) Limit theorems for critical Markov branching processes with several types of particles and infinite second moments. Math. USSR Sbornik 32, 215-225. | Zbl | MR | DOI
[49] (1980) Reduced branching processes. Theory Probab. Appl. 25, 584-588. | Zbl | MR | DOI
[50] (1975) Limit distributions of the distance to the closest common ancestor. Theory Probab. Appl. 20, 602-612. | Zbl | MR | DOI






