@article{PSMIR_1989___4_103_0,
author = {Heintz, Joos and Roy, Marie-Fran\c{c}oise and Solerno, Pablo},
title = {Sur la complexit\'e du principe de {Tarski-Seidenberg}},
journal = {Publications de l'Institut de recherche math\'ematiques de Rennes},
pages = {103--120},
year = {1989},
publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
number = {4},
language = {fr},
url = {https://www.numdam.org/item/PSMIR_1989___4_103_0/}
}
TY - JOUR AU - Heintz, Joos AU - Roy, Marie-Françoise AU - Solerno, Pablo TI - Sur la complexité du principe de Tarski-Seidenberg JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1989 SP - 103 EP - 120 IS - 4 PB - Département de Mathématiques et Informatique, Université de Rennes UR - https://www.numdam.org/item/PSMIR_1989___4_103_0/ LA - fr ID - PSMIR_1989___4_103_0 ER -
%0 Journal Article %A Heintz, Joos %A Roy, Marie-Françoise %A Solerno, Pablo %T Sur la complexité du principe de Tarski-Seidenberg %J Publications de l'Institut de recherche mathématiques de Rennes %D 1989 %P 103-120 %N 4 %I Département de Mathématiques et Informatique, Université de Rennes %U https://www.numdam.org/item/PSMIR_1989___4_103_0/ %G fr %F PSMIR_1989___4_103_0
Heintz, Joos; Roy, Marie-Françoise; Solerno, Pablo. Sur la complexité du principe de Tarski-Seidenberg. Publications de l'Institut de recherche mathématiques de Rennes, Groupe de travail de calcul formel, no. 4 (1989), pp. 103-120. https://www.numdam.org/item/PSMIR_1989___4_103_0/
[1] , , : The complexity of elementary algebra and geometry. J. of Computation and Systems Sciences 32 251-264 (1986). | Zbl | MR
[2]: On Computing the determinant in small parallel time using a small number of processors. Information Processing Letter 18 (1984), 147-150. | Zbl | MR
[3], , : Géométrie algébrique réelle. Springer Verlag (1987). | Zbl | MR
[4]: Some algebraic and geometric computations in PSPACE. ACM Symposium on the theory of computation, 460-467 (1988).
[5]: The complexity of robot motion planning. MIT Press (1989). | MR
[6] : Quantifier elimination for real closed fields by cylindric algebraic decomposition. In Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Sciences, vol. 33, pp. 134-183, Springer-Verlag, Berlin (1975). | Zbl | MR
[7], , : Some new effectivity bounds in computational geometry. Proc. AAECC-6 (Rome 1988) - Best Paper Award AAECC-6 - Springer Lecture Notes in Computer Science 357 131-151. | Zbl | MR
[8] , : Thom's lemma, the coding of real algebraic numbers and the topology of semi-algebraic sets. J. of Symbolic Computation 5 121-129 (1988). | Zbl | MR
[9], : Real quantifier elimination is doubly exponential. J. of Symbolic Computation 5 29-35 (1988). | Zbl | MR
[10], , : Algorithmes rapides en séquentiel et en parallle pour l'élimina- tion des quantificateurs en géométrie élémentaire. Séminaire Structures Ordonnées, U.E.R. de Math. Univ. Paris VII (1987). | Zbl
[11], , : Precise sequential and parallel complexity bounds for the quantifier elimination of algebraically closed fields. A paraître dansJournal of Pure and Applied Algebra. | Zbl | MR
[12]: Parallel arithmetic computations: a survey. Proc 13th Conf. MFCS (1986). | Zbl | MR
[13], , , : Sturm-Habicht sequences. Proceedings ISSAC 1989.
[14], , , : Sous-résultants et spécialisation de la suite de Sturm. A paraitre au RAIRO Informatique théorique. | Zbl | Numdam
[15]: Complexity of deciding Tarski algebra. J. Symbolic Computation 5 (1988) 65-108. | Zbl | MR
[16], : Solving systems of polynomial inequalities in subexponential time. J. Symbolic Computation 5 (1988) 37-64. | Zbl | MR
[17]Definability and fast quantifier elimination in algebraically closed fields Theor. Comput. Sci. 24 (1983) 239-27. | Zbl | MR
[18], , : On the complexity of semialgebraic sets. Proc. IFIP (San Francisco 1989).
[19], , : Complexité du principe de Tarski- Seidenberg. Compte-Rendus de l'Académie des Sciences Paris. 309 825-830 (1989). | Zbl | MR
[20], , : On solving systems of algebraic equations. Soumis au Journal of Symbolic Computation.
[21] : Thèse. Université de Buenos Aires (en préparation).
[22]: Generalized poynomial reaminder sequences. Dans Computer Algebra, Symbolic and Algebraic Computation 115-138. Edit par Buchberger, Collins, Loos. Springer Verlag 1982. | Zbl
[23]: A faster PSPACE algorithm for deciding the existential theory of the reals. Technical Report 792, Cornell University Ithaca (1988).
[24]: On the computational complexity and geometry of the first order theory of the reals. Technical Report 856, Cornell University Ithaca (1989). | Zbl
[25], : Complexity of computations with real algebraic numbers. A paraitre au Journal of Symbolic Computation. | Zbl
[26]: A new decision method for elementary algebra and geometry. Ann. Math. 60 365-374 (1954). | Zbl | MR
[27] Algebraic geometry. Springer Verlag (1974) | MR
[28]: Complejidad de conjuntos semialgebraicos. Thèse. Université de Buenos Aires 1989.
[29] : Mémoire sur la résolution des équations numériques. Ins. France Sc. Math. Phys. 6 (1835).
[30] : On a theory of syzygetic relations of two rational integral functions,comprising an application to the theory of Sturm's function. Trans. Roy. Soc. London (1853). Reprint in: Sylvester : Collected Math Papers. Chelsea Pub. Comp. NY 1983 vol 1 429-586.
[31]: A decision method for elementary algebra and geometry. Berkeley (1951). | Zbl | MR
[32]: Bounds of real roots of a system of algebraic equations. Notes of Sci. Seminars of Leningrad Department of Math. Steklov Inst. 13 7-19. | MR | EuDML
[33]: Algebraic curves. Princeton University Press (1950). | Zbl | MR
[34]: The complexity of lieanr problems in fields. J. Symbolic Computation 5 3-27 (1988). | Zbl | MR






