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AN INTEGRAL EQUATION FORMULATION OF THE 𝑁-BODY DIELECTRIC
SPHERES PROBLEM. PART I: NUMERICAL ANALYSIS

Muhammad Hassan* and Benjamin Stamm

Abstract. In this article, we analyse an integral equation of the second kind that represents the
solution of 𝑁 interacting dielectric spherical particles undergoing mutual polarisation. A traditional
analysis can not quantify the scaling of the stability constants- and thus the approximation error-
with respect to the number 𝑁 of involved dielectric spheres. We develop a new a priori error analysis
that demonstrates 𝑁 -independent stability of the continuous and discrete formulations of the integral
equation. Consequently, we obtain convergence rates that are independent of 𝑁 .
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1. Introduction

The so-called 𝑁 -body problem is a general term used to describe a vast category of physical problems involving
the interaction of a large number of objects. Such problems arise in a variety of contexts in fields as diverse
as quantum mechanics, molecular dynamics, astrophysics and electrostatics. The origin of the 𝑁 -body problem
lies in the Principia Mathematica wherein Newton considered the motion of celestial bodies [44]. Starting with
the work of Henri Poincaré [45], which incidentally led to the development of chaos theory, a significant amount
of evidence has been accumulated that obtaining an analytic solution to the 𝑁 -body problem in a tractable
manner is not possible (see, e.g., [47,53]). As a consequence, there has been a great deal of interest in developing
numerical methods that can efficiently compute approximate solutions to the 𝑁 -body problem. An important
benchmark to assess the quality of any such numerical method has been its ability to obtain a linear scaling, i.e.,
given a system composed of 𝑁 interacting objects, to achieve time and computational complexity of order 𝒪(𝑁).
Attempts to achieve this benchmark have led to the development of extremely efficient numerical algorithms
such as fast multipole (FMM) and particle mesh methods, which have been applied very successfully to a variety
of 𝑁 -body problems (see, e.g., [23, 24] for an explanation of the FMM and [28] for particle mesh methods).

In the discipline of chemical physics, the interactions between charged particles in concentrated colloidal
solutions (see, e.g., [6]) and Coulombic crystals (see, e.g., [25]), or the phenomena of electrostatic self-assembly
(see, e.g., [40]) and super lattices (see, e.g., [50]) are all examples of 𝑁 -body problems in electrostatics, and
an accurate description of the electrostatic forces between the interacting particles is necessary in order to
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understand the physics underlying each of these phenomena. Until quite recently however, the state-of-the-art
for the computation of the electrostatic forces between a large number of charged particles was quite under-
developed. Most results in the literature relied on so-called image charge methods or multipole expansion
approaches (see, e.g., [42, 46, 56] for the former, [12, 36, 38] for the latter and [4, 20] for other approaches). The
key deficiency of such numerical methods is that they have often not been formulated in a manner which allows a
systematic numerical analysis of the algorithm. Recently, in [34], the authors proposed a computational method
based on a Galerkin discretisation of an integral equation formulation of the second kind for the induced surface
charges resulting on a large number of dielectric spheres of varying radii and dielectric constants, embedded
in a homogenous dielectric medium and undergoing mutual polarisation. Numerical experiments indicated that
this algorithm displayed some interesting behaviour:

(1) For a fixed number of degrees of freedom per sphere, the average error on each sphere remained bounded
when increasing the number of dielectric spheres.

(2) For a fixed number of dielectric spheres, the total error decayed exponentially when increasing the degrees
of freedom per sphere.

(3) Through the use of the FMM, the numerical method achieved computational complexity that scaled linearly
with respect to the number of dielectric spheres.

Points (1) and (2) deal with the accuracy of the method and point (3) gives a measure of the computational
scalability of the numerical algorithm. Taken together, these numerical observations suggest that the method
proposed in [34] is linear scaling in accuracy, i.e., in order to obtain an approximate solution with fixed aver-
age (the total error scaled by 𝑁) or relative error, the computational cost of the algorithm scales as 𝒪(𝑁).
Consequently, the integral equation-based approach proposed by Lindgren et al. is a significant advance in the
state-of-the-art for the computation of the electrostatic interactions between a large number of charged particles
undergoing mutual polarisation.

It is now natural to ask if one can provide a rigorous mathematical justification for the behaviour exhibited
by the numerical method in points (1)–(3). More precisely, can one prove that the average or relative error is
bounded independent of the number of objects in the problem? And that the computational complexity of the
numerical method proposed in [34] scales linearly with respect to the number of objects in the problem? The
current article is the first in a series of two and focuses on the numerical analysis of the algorithm introduced
in [34] in order to provide a mathematically sound answer to the first question. More specifically, we prove that

(a) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, the integral equation
formulation of the second kind proposed in [34] that describes the induced surface charges resulting on these
dielectric spheres undergoing mutual polarisation is well-posed.

(b) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, the Galerkin dis-
cretisation of this second-kind integral equation is also well-posed.

(c) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, there exists an
upper bound on the relative error of the approximate solution that does not explicitly depend on the number
𝑁 of dielectric spheres in the system. Consequently, we can deduce 𝑁 -independent error estimates for any
family of geometrical configurations that satisfies certain geometrical assumptions which are described in
detail later.

(d) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, given certain
assumptions on the regularity of the exact solution, the total error of the approximate solution decays
exponentially as the degrees of freedom per sphere are increased.

A detailed complexity analysis of this numerical method which provides a mathematically sound answer to
the second question is the subject of the contribution [27].
𝑁 -body problems have been widely studied in the literature in the context of electromagnetic or acoustic

scattering by a large number of obstacles (see, e.g., [1,8,9,21,22,26,55]). Such scattering problems are significantly
more complicated to analyse than the electrostatic interaction problem we consider here because the underlying
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differential operator in wave phenomena is indefinite, which causes many technical difficulties. Consequently, it
is already a significant challenge to design a computationally efficient numerical algorithm that is stable with
respect to a large regime of wave numbers and obstacle sizes and placements, let alone perform a comprehensive
numerical analysis of the algorithm and derive rigorous convergence rates. Thus, articles such as [1,22,26] quoted
above focus mostly on the design of efficient computational methods and use numerical tests to validate their
proposals. On the other hand while articles such as [14, 21] do establish convergence rates with respect to the
degrees of freedom, these rates are not shown to be independent of the number of obstacles 𝑁 . Incidentally,
several of the articles mentioned above propose algorithms that are based on integral equations of the first kind
(see [8,9,14,55] quoted above). This framework, while suitable for numerical analysis, suffers from a well-known
problem: Galerkin discretisations of integral equations of the first kind typically lead to dense, ill-conditioned
solution matrices which causes slow convergence of the iterative solvers. As a remedy, several of these articles have
proposed efficient preconditioners (see e.g., the article [8]) but the introduction of preconditioning techniques
further complicates questions of scalability. This computational deficiency is precisely why Lindgren et al. [34]
proposed and why we analyse an integral equation formulation of the second kind.

There is an abundant literature on integral equations of the second kind (see, e.g., the books [32, 49], or the
articles [2, 3, 16, 17, 39, 52]). In particular, the well-posedness theory of second kind integral equations is well
established, and it is understood that Galerkin discretisations of second kind integral equations typically leads to
well conditioned solution matrices. As a consequence, second kind integral equations have been constructed for
the solutions of a variety of problems. More recently, such formulations have also been proposed for problems very
similar to the 𝑁 -body dielectric sphere problem including, for instance, acoustic and electromagnetic scattering
by composite structures (see, e.g., [7, 10, 43, 48]), and multi subdomain diffusion [11]. The key mathematical
deficiency of such second kind integral formulations is that stability estimates- and thus also error estimates-
are often difficult to obtain except in certain special cases.

Therefore, obtaining stability and error estimates for our problem using the existing well-posedness analysis
in the literature is not straight forward. To make matters worse, most integral equations are applied in situations
where the size of the domain is fixed so the existing analysis in the literature focuses on establishing the existence
of stability and continuity constants of the boundary integral operators that are independent of the degrees of
freedom, such as the mesh width or the boundary element size. Since the stability and continuity constants
appear in the error estimates, it is crucial to establish that these constants are explicitly independent of the
number of objects in the problem setting. Unfortunately, this is not a priori clear and in some cases is not even
true for the classical well-posedness analysis. Consequently, in order to prove points (c) and (d), we have had
to introduce a new well-posedness analysis for establishing points (a) and (b). All these issues are discussed in
more detail in Section 2.5.

The remainder of this article is organised as follows. In Section 2, we describe the problem setting, state and
discuss our main results, and consider the limitations of the existing classical analysis of second kind integral
equations in the literature. Section 3 then contains numerical experiments that validate our theoretical results.
In Section 4, we state intermediate lemmas and the proofs of our main results. Finally, in Section 5, we present
our conclusion and discuss future directions of research.

2. Problem setting and main results

Throughout this article, we will use standard results and notation from the theory of integral equations. We
follow the notation of, and use as the primary reference, the book of Sauter and Schwab on boundary elements
methods [49].

2.1. Setting and notation

To begin with we would like to describe precisely the types of geometrical situations we will consider in
this article. As indicated in the introduction, we are interested in studying geometrical configurations that are
the unions of an arbitrary number 𝑁 of non-intersecting open balls with varying radii in three dimensions.
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However, in order to be completely rigorous in our claim of 𝑁 -independent error estimates, we must impose
certain assumptions on the types of geometries we consider. To this end, let ℐ denote a countable indexing
set. We consider a so-called family of geometries {Ωℱ}ℱ∈ℐ . Each element Ωℱ ⊂ R3 in this family is the (set)
union of a fixed number of non-intersecting open balls of varying locations and radii with associated dielectric
constants, and therefore represents a particular physical geometric situation. It is easy to see that each element
Ωℱ of this family of geometries is uniquely determined by the following four parameters:

– A non-zero number 𝑁ℱ ∈ N, which represents the total number of dielectric spherical particles that compose
the geometry Ωℱ .

– A collection of points
{︀
xℱ𝑖
}︀𝑁ℱ
𝑖=1

∈ R3, which represent the centres of the spherical particles composing the
geometry Ωℱ .

– A collection of positive real numbers
{︀
𝑟ℱ𝑖
}︀𝑁ℱ
𝑖=1

∈ R, which represent the radii of the spherical particles
composing the geometry Ωℱ .

– A collection of positive real numbers
{︀
𝜅ℱ𝑖
}︀𝑁
𝑖=0

∈ R. Here, 𝜅ℱ0 denotes the dielectric constant of the external

medium while
{︀
𝜅ℱ𝑖
}︀𝑁
𝑖=1

represent the dielectric constants of each dielectric sphere.

Indeed, using the first three parameters we can define the open balls Ωℱ𝑖 := ℬ𝑟𝑖 (x𝑖) ⊂ R3, 𝑖 ∈ {1, . . . , 𝑁ℱ}
which represent the spherical dielectric particles composing the geometry Ωℱ , i.e., Ωℱ = ∪𝑁ℱ𝑖=1Ω

ℱ
𝑖 . Moreover,

the fourth parameter
{︀
𝜅ℱ𝑖
}︀𝑁
𝑖=0

denotes the dielectric constants associated with this geometry.
We now impose the following three important assumptions on the above parameters:

A1 (Uniformly bounded radii). There exist constants 𝑟∞− > 0 and 𝑟∞+ > 0 such that

inf
ℱ∈ℐ

min
𝑖=1,...,𝑁ℱ

𝑟ℱ𝑖 > 𝑟∞− and sup
ℱ∈ℐ

max
𝑖=1,...,𝑁ℱ

𝑟ℱ𝑖 < 𝑟∞+ .

A2 (Uniformly bounded minimal separation). There exists a constant 𝜖∞ > 0 such that

inf
ℱ∈ℐ

min
𝑖,𝑗=1,...,𝑁ℱ

𝑖̸=𝑗

(︀
|xℱ𝑖 − xℱ𝑗 | − 𝑟ℱ𝑖 − 𝑟ℱ𝑗

)︀
> 𝜖∞.

A3 (Uniformly bounded dielectric constants). There exist constants 𝜅∞− > 0 and 𝜅∞+ > 0 such that

inf
ℱ∈ℐ

min
𝑖=1,...,𝑁ℱ

𝜅ℱ > 𝜅∞− and sup
ℱ∈ℐ

max
𝑖=1,...,𝑁ℱ

𝜅ℱ < 𝜅∞+ .

In other words we assume that the family of geometries {Ωℱ}ℱ∈ℐ we consider in this article describe physical
situations where the radii of the dielectric spherical particles, the minimum inter-sphere separation distance
and the dielectric constants are all uniformly bounded. These assumptions are necessary because, as we will
show, the error estimates we derive, while explicitly independent of the number of dielectric particles 𝑁ℱ , do
depend on other geometrical parameters, and we would thus like to avoid situations where these geometric
parameters degrade with increasing 𝑁ℱ . We remark that from a practical perspective, these assumptions do not
greatly limit the scope of our results. Indeed, in many physical applications one typically considers non-metallic
dielectric particles which neither have vanishing or exploding dielectric constants nor vanishing or exploding
radii (see, e.g., [25, 33,35,40,51]).

In the remainder of this article, we will consider a fixed geometry from the family of geometries {Ωℱ}ℱ∈ℐ
satisfying the assumptions (A1)–(A3). To avoid bulky notation we will drop the superscript and subscript ℱ
and denote this geometry by Ω−. The geometry is constructed as follows: Let 𝑁 ∈ N, let {x𝑖}𝑁𝑖=1 ∈ R3 be a
collection of points in R3 and let {𝑟𝑖}𝑁𝑖=1 ∈ R be a collection of positive real numbers, and for each 𝑖 ∈ {1, . . . , 𝑁}
let Ω𝑖 := ℬ𝑟𝑖 (x𝑖) ⊂ R3 be the open ball of radius 𝑟𝑖 > 0 centred at the point x𝑖. Then Ω− ⊂ R3 is defined as
Ω− := ∪𝑁𝑖=1Ω𝑖. Furthermore, we define Ω+ := R3 ∖ Ω−, and we write 𝜕Ω for the boundary of Ω− and 𝜂 (x) for
the unit normal vector at x ∈ 𝜕Ω pointing towards the exterior of Ω−.
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Next, let {𝜅𝑖}𝑁𝑖=0 ∈ R be a collection of positive real numbers and let the function 𝜅 : 𝜕Ω → R be defined
as 𝜅 (x) := 𝜅𝑖 for x ∈ 𝜕Ω𝑖. Thus, 𝜅 is a piecewise constant function that takes constant positive values on the
boundary of each open ball 𝜕Ω𝑖, 𝑖 = 1, . . . , 𝑁 . Physically, this function represents the dielectric constant of each
of these open balls while the constant 𝜅0 represents the dielectric constant of the medium. We observe that by
definition for each 𝑖 ∈ {1, . . . , 𝑁}, either 𝜅−𝜅0

𝜅0
|𝜕Ω𝑖 ≥ 0 or 𝜅−𝜅0

𝜅0
|𝜕Ω𝑖 ∈ (−1, 0].

Following standard practice, we write 𝐻1 (Ω−) :=
{︀
𝑢 ∈ 𝐿2 (Ω−) : ∇𝑢 ∈ 𝐿2 (Ω−)

}︀
with the norm

‖𝑢‖2𝐻1(Ω−) :=
∑︀𝑁
𝑖=1 ‖𝑢‖2𝐿2(Ω𝑖)

+ ‖∇𝑢‖2𝐿2(Ω𝑖)
. Moreover, inspired by the definition in Section 2.9.2.4 of [49]

we define the weighted Sobolev space 𝐻1 (Ω+) as the completion of 𝐶∞comp (Ω+) with respect to the norm

‖𝑢‖2𝐻1(Ω+) :=
∫︀
Ω+

|𝑣(x)|2
1+|x|2 dx+‖∇𝑣‖2𝐿2(Ω+). Note that functions that satisfy the decay conditions associated with

exterior Laplace problems will belong to this space.
Next, we denote by 𝐻

1
2 (𝜕Ω) the Sobolev space of order 1

2 equipped with the Sobolev–Slobodeckij norm

‖𝜆‖2
𝐻

1
2 (𝜕Ω)

:=
∑︀𝑁
𝑖=1 ‖𝜆‖2𝐿2(𝜕Ω𝑖)

+
∫︀
𝜕Ω𝑖

∫︀
𝜕Ω𝑖

|𝜆(x)−𝜆(y)|2
|x−y|3 dx dy. Notice that we have chosen to define ‖·‖2

𝐻
1
2 (𝜕Ω)

as

a sum of local norms on each sphere. Moreover, we define 𝐻− 1
2 (𝜕Ω) :=

(︁
𝐻

1
2 (𝜕Ω)

)︁*
and we equip this Sobolev

space with the canonical dual norm

‖𝜎‖
𝐻−

1
2 (𝜕Ω)

:= sup
0̸=𝜓∈𝐻

1
2 (𝜕Ω)

⟨𝜎, 𝜓⟩
𝐻−

1
2 (𝜕Ω)×𝐻

1
2 (𝜕Ω)

‖𝜓‖
𝐻

1
2 (𝜕Ω)

∀𝜎 ∈ 𝐻− 1
2 (𝜕Ω) .

We remark that using the Lebesgue space 𝐿2 (𝜕Ω) as a pivot space for 𝐻
1
2 (𝜕Ω) and 𝐻− 1

2 (𝜕Ω), we obtain that
the duality pairing ⟨·, ·⟩

𝐻−
1
2 (𝜕Ω)×𝐻

1
2 (𝜕Ω)

reduces to the usual 𝐿2 inner product (·, ·)𝐿2(𝜕Ω) for sufficiently regular

functions (see, e.g., [49], Chap. 2). For the sake of brevity, when there is no possibility of confusion, we will use
the notation ⟨·, ·⟩𝜕Ω to denote the duality pairing ⟨·, ·⟩

𝐻−
1
2 (𝜕Ω)×𝐻

1
2 (𝜕Ω)

.

We introduce 𝛾− : 𝐻1 (Ω−) → 𝐻
1
2 (𝜕Ω) and 𝛾+ : 𝐻1 (Ω+) → 𝐻

1
2 (𝜕Ω) as the continuous, linear and surjective

interior and exterior Dirichlet trace operators, respectively (see, e.g., [49], Thms. 2.6.8 and 2.6.11 or [41],
Thm. 3.38). Moreover, for 𝑠 ∈ {+,−}, we define the closed subspace H (Ω𝑠) :=

{︀
𝑢 ∈ 𝐻1 (Ω𝑠) : Δ𝑢 = 0 in Ω𝑠

}︀
,

and we write 𝛾−𝑁 : H (Ω−) → 𝐻− 1
2 (𝜕Ω) and 𝛾+

𝑁 : H (Ω+) → 𝐻− 1
2 (𝜕Ω) for the interior and exterior Neumann

trace operator, respectively (see [49], Thm. 2.8.3 for precise conventions). Note that both the interior and exterior
Dirichlet and Neumann trace operators can be defined analogously for functions of appropriate regularity defined
on Ω−∪Ω+ or R3. In addition, we introduce the so-called (interior) Dirichlet-to-Neumann map DtN: 𝐻

1
2 (𝜕Ω) →

𝐻− 1
2 (𝜕Ω) as follows: Given any 𝜆 ∈ 𝐻 1

2 (𝜕Ω), let 𝑢𝜆 ∈ H (Ω−) denote the unique harmonic function in 𝐻1 (Ω−)
such that 𝛾−𝑢𝜆 = 𝜆. Then we define DtN𝜆 := 𝛾−𝑁𝑢𝜆. Note that local Dirichlet-to-Neumann maps can be defined
analogously on each sphere 𝜕Ω𝑖, 𝑖 = 1, . . . , 𝑁 .

Next, for each 𝜈 ∈ 𝐻− 1
2 (𝜕Ω) , 𝜆 ∈ 𝐻 1

2 (𝜕Ω) and all x ∈ R3 ∖ 𝜕Ω we define the functions

𝒮 (𝜈) (x) :=
∫︁
𝜕Ω

𝜈 (y)
4𝜋|x− y|

dy,

𝒟 (𝜆) (x) :=
∫︁
𝜕Ω

𝜆 (y) 𝜂 (y) · ∇y
1

4𝜋|x− y|
dy.

The mappings 𝒮 and 𝒟 are known as the single layer and double layer potentials, respectively. It can be
shown (see, e.g., [49], Chap. 2) that 𝒮 is a bounded linear operator from 𝐻− 1

2 (𝜕Ω) to 𝐻1
loc

(︀
R3
)︀

and 𝒟 is a
bounded linear operator from 𝐻

1
2 (𝜕Ω) to 𝐻1

loc

(︀
R3 ∖ 𝜕Ω

)︀
, and both 𝒮 and 𝒟 map into the space of harmonic

functions on the complement R3 ∖ 𝜕Ω of the boundary.
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As the final step, we define the following linear bounded boundary integral operators:

𝒱 :=
(︀
𝛾− ∘ 𝒮

)︀
: 𝐻− 1

2 (𝜕Ω) → 𝐻
1
2 (𝜕Ω) , 𝒦 :=

(︁
𝛾− ∘ 𝒟 +

1
2
𝐼
)︁

: 𝐻
1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) ,

𝒲 := −
(︀
𝛾−𝑁 ∘ 𝒟

)︀
: 𝐻

1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) , 𝒦* :=
(︁
𝛾−𝑁 ∘ 𝒮 −

1
2
𝐼
)︁

: 𝐻− 1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) .

Here 𝐼 denotes the identity operator on the relevant trace space. The mapping 𝒱 is known as the single layer
boundary operator, the mapping 𝒦 is known as the double layer boundary operator, the mapping 𝒦* is known
as the adjoint double layer boundary operator and the mapping 𝒲 is known as the hypersingular boundary
operator. Detailed definitions and a discussion of the properties of these boundary integral operators can be
found in Chapter 3 of [49]. We state three properties in particular that will be used in the sequel.

Property 1 ([49], Thm. 3.5.3). The single layer boundary operator 𝒱 : 𝐻− 1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) is Hermitian and

coercive, i.e., there exists a constant 𝑐𝒱 > 0 such that for all functions 𝜎 ∈ 𝐻− 1
2 (𝜕Ω) it holds that

⟨𝜎,𝒱𝜎⟩𝜕Ω ≥ 𝑐𝒱‖𝜎‖2
𝐻−

1
2 (𝜕Ω)

.

This implies in particular that the inverse 𝒱−1 : 𝐻
1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) is also a Hermitian, coercive and
bounded linear operator. Consequently, 𝒱 induces a norm ‖ · ‖𝒱 and associated inner product on 𝐻− 1

2 (𝜕Ω) and
the inverse 𝒱−1 induces a norm ‖ · ‖𝒱−1 and associated inner product on 𝐻

1
2 (𝜕Ω). We emphasise here that

while the coercivity constant 𝑐𝒱 of the single layer boundary operator a priori depends on the geometry Ω−,
the independence of 𝑐𝒱 with respect to the number of open balls 𝑁 in the system is a key point in the present
analysis and will be the subject of further discussion in Section 4.1 (see, in particular, Lems. 4.7 and 4.8).

Property 2 ([49], Thm. 3.5.3). The hypersingular boundary operator 𝒲 : 𝐻
1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) is Hermitian,

non-negative and coercive on a subspace of 𝐻
1
2 (𝜕Ω), i.e., there exists a constant 𝑐𝒲 > 0 such that for all

functions 𝜆 ∈ 𝐻 1
2 (𝜕Ω) with

∑︀𝑁
𝑖=1

⃒⃒⃒∫︀
𝜕Ω𝑖

𝜆 (x) dx
⃒⃒⃒
= 0, it holds that

⟨𝒲𝜆, 𝜆⟩𝜕Ω ≥ 𝑐𝒲‖𝜆‖2
𝐻

1
2 (𝜕Ω)

.

Property 3 ([49], Thm. 3.8.7). The coercivity constants of the single layer and hypersingular boundary oper-
ators satisfy 𝑐𝒱𝑐𝒲 ≤ 1

4 . Therefore the constant

𝑐𝒦 :=
1
2

+

√︂
1
4
− 𝑐𝒱𝑐𝒲 ,

is well-defined and 𝑐𝒦 ∈
[︀
1
2 , 1
)︀
.

We are now ready to state the problem we wish to analyse.

2.2. Abstract dielectric electrostatic interaction problem

Let 𝐾 denote the Coulomb constant and let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω) be arbitrary. For each 𝑠 ∈ {+,−} find a function

Φ𝑠 ∈ H (Ω𝑠) with the property that

𝛾+Φ+ − 𝛾−Φ− = 0 in 𝐻
1
2 (𝜕Ω) ,

𝜅𝛾−𝑁Φ− − 𝜅0𝛾
+
𝑁Φ+ = 4𝜋𝐾𝜎𝑓 in 𝐻− 1

2 (𝜕Ω) ,
|Φ+ (x) | ≤ 𝐶|x|−1 for |x| → ∞. (2.1)

Remark 2.1. We may assume without loss of generality that 𝐾 = 1. This is, for instance, true if one picks the
CGS system of units.
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Remark 2.2. In the physics literature, 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω) is called the free charge and is a known quantity. The

unknown function Φ𝑠 ∈ H (Ω𝑠) is the electric potential that results after the polarisation of the free charge
residing on the surface of the dielectric spheres 𝜕Ω𝑖, 𝑖 = 1, . . . , 𝑁 .

Remark 2.3. The operator equation (2.1) is very similar to the abstract transmission problem for second order
elliptic PDEs. A detailed overview of the transmission problem can, for example, be found in Chapter 2.9 of
[49].

From a practical perspective, the main difficulty in solving the transmission problem (2.1) is the fact that
this problem is posed on the unbounded domain R3. The usual approach in the literature to circumventing
this difficulty is to appeal to the theory of integral equations and reformulate an operator equation posed on
some domain Ω− ∪ Ω+, such as equation (2.1), as a so-called boundary integral equation (BIE) posed on the
interface 𝜕Ω (see, e.g., [41] or [49]).

Integral equation formulation for the induced charges

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω). Find 𝜈 ∈ 𝐻− 1

2 (𝜕Ω) with the property that

𝜈 − 𝜅0 − 𝜅

𝜅0
(DtN𝒱) 𝜈 =

4𝜋
𝜅0
𝜎𝑓 . (2.2)

Remark 2.4. From a physical point of view, the unknown 𝜈 ∈ 𝐻− 1
2 (𝜕Ω) in the integral equation (2.2) is the

induced surface charge on each sphere 𝜕Ω𝑖, 𝑖 = 1, . . . , 𝑁 .

Remark 2.5. Consider the setting of the integral equation (2.2). Suppose there is some open ball
Ω𝑗 , 𝑗 ∈ {1, . . . , 𝑁} such that 𝜅 = 𝜅0 on 𝜕Ω𝑗 . Then it follows that the induced surface charge 𝜈𝑗 on sphere
𝜕Ω𝑗 is simply given by 𝜈𝑗 = 4𝜋

𝜅0
𝜎𝑓,𝑗 where 𝜎𝑓,𝑗 denotes the free charge on 𝜕Ω𝑗 . Consequently, throughout the

remainder of this article, we will assume that 𝜅 ̸= 𝜅0 on all the spheres. Note that physically, the situation
𝜅 = 𝜅0 on 𝜕Ω𝑗 corresponds to no polarisation on the sphere 𝜕Ω𝑗 .

The boundary integral equation (2.2) can be derived from the transmission problem (2.1) using a single layer
ansatz. Indeed, we have the following lemma:

Lemma 2.6. Let Φ := (Φ−,Φ+) ∈ H (Ω−) × H (Ω+) be a solution to the transmission problem (2.1). Then
𝜈 := 𝒱−1

(︀
𝛾−Φ−

)︀
is a solution to the BIE (2.2). Conversely, let 𝜈 ∈ 𝐻− 1

2 (𝜕Ω) be a solution to the BIE (2.2).
Then (Φ−,Φ+) :=

(︀
𝒮𝜈|Ω− ,𝒮𝜈|Ω+

)︀
is a solution to the transmission problem (2.1).

The proof of Lemma 2.6 can be found in Appendix B.

Remark 2.7. We have claimed in the introduction that the BIE (2.2) is essentially an integral equation of the
second kind. This assertion is discussed in more detail in Section 2.5.

A key quantity of interest in physical applications is the total electrostatic energy associated with the free
charge 𝜎𝑓 ∈ 𝐻− 1

2 (𝜕Ω) and the resulting induced surface charge 𝜈 ∈ 𝐻− 1
2 (𝜕Ω).

Definition 2.8 (Energy functional and total electrostatic energy). Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω). Then we define the

electrostatic energy functional ℰ𝜎𝑓
: 𝐻− 1

2 (𝜕Ω) → R as the bounded linear mapping with the property that for
all 𝜎 ∈ 𝐻− 1

2 (𝜕Ω) it holds that

ℰ𝜎𝑓
(𝜎) :=

1
2
⟨𝜎𝑓 ,𝒱𝜎⟩𝜕Ω =

1
2
⟨𝜎,𝒱𝜎𝑓 ⟩𝜕Ω, (2.3)

and we define the total electrostatic energy of the system as ℰ𝜎𝑓
(𝜈) where 𝜈 ∈ 𝐻− 1

2 (𝜕Ω) is the solution to the
integral equation (2.2).



S72 M. HASSAN AND B. STAMM

For clarity of exposition, we now define the relevant boundary integral operator.

Definition 2.9. We define the linear operator 𝒜 : 𝐻
1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) as the mapping with the property that

for all 𝜆 ∈ 𝐻 1
2 (𝜕Ω) it holds that

𝒜𝜆 := 𝜆− 𝒱DtN
(︁𝜅0 − 𝜅

𝜅0
𝜆
)︁
.

In addition, we denote by 𝒜* : 𝐻− 1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) the adjoint operator of 𝒜.

The BIE (2.2) now has a straightforward weak formulation.

Weak formulation of the integral equation (2.2)

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω) and let 𝒜* : 𝐻− 1

2 (𝜕Ω) → 𝐻− 1
2 (𝜕Ω) denote the adjoint of the operator 𝒜 given by

Definition 2.9. Find 𝜈 ∈ 𝐻− 1
2 (𝜕Ω) such that for all 𝜆 ∈ 𝐻 1

2 (𝜕Ω) it holds that

⟨𝒜*𝜈, 𝜆⟩𝜕Ω =
4𝜋
𝜅0
⟨𝜎𝑓 , 𝜆⟩𝜕Ω . (2.4)

Next, we state the Galerkin discretisation of the boundary integral equation (2.2).

2.3. Galerkin discretisation

We first define the relevant approximation spaces. In the sequel, we will denote by N0 the set of non-negative
integers.

Definition 2.10 (Spherical harmonics). Let ℓ ∈ N0 and 𝑚 ∈ {−ℓ, . . . , ℓ} be integers. Then we define the
function 𝒴𝑚ℓ : S2 → R as

𝒴𝑚ℓ (𝜃, 𝜑) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)𝑚

√
2
√︁

2ℓ+1
4𝜋

(ℓ−|𝑚|)!
(ℓ+|𝑚|)!𝑃

|𝑚|
ℓ

(︀
cos (𝜃)

)︀
sin
(︀
|𝑚|𝜑

)︀
, if 𝑚 < 0,√︁

2ℓ+1
4𝜋 𝑃𝑚ℓ

(︀
cos (𝜃)

)︀
, if 𝑚 = 0,

(−1)𝑚
√

2
√︁

2ℓ+1
4𝜋

(ℓ−𝑚)!
(ℓ+𝑚)!𝑃

𝑚
ℓ

(︀
cos (𝜃)

)︀
cos
(︀
𝑚𝜑
)︀
, if 𝑚 > 0,

where 𝑃𝑚ℓ denotes the associated Legendre polynomial of degree ℓ and order 𝑚. The function 𝒴𝑚ℓ is known as
the real-valued 𝐿2-orthonormal spherical harmonic of degree ℓ and order 𝑚.

Definition 2.11 (Approximation space on a sphere). Let 𝒪x0 ⊂ R3 be an open ball of radius 𝑟 > 0 centred
at the point x0 ∈ R3 and let ℓmax ∈ N. We define the finite-dimensional Hilbert space 𝑊 ℓmax (𝜕𝒪x0) ⊂
𝐻

1
2 (𝜕𝒪x0) ⊂ 𝐻− 1

2 (𝜕𝒪x0) as the vector space

𝑊 ℓmax (𝜕𝒪x0) :=
{︁
𝑢 : 𝜕𝒪x0 → R such that 𝑢 (x) =

ℓmax∑︁
ℓ=0

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝑢]𝑚ℓ 𝒴𝑚ℓ
(︂

x− x0

|x− x0|

)︂
where all [𝑢]𝑚ℓ ∈ R

}︁
,

equipped with the inner product

(𝑢, 𝑣)𝑊 ℓmax(𝜕𝒪x0) := 𝑟2[𝑢]00[𝑣]
0
0 + 𝑟2

ℓmax∑︁
ℓ=1

𝑚=+ℓ∑︁
𝑚=−ℓ

ℓ

𝑟
[𝑢]𝑚ℓ [𝑣]𝑚ℓ ∀𝑢, 𝑣 ∈𝑊 ℓmax (𝜕𝒪x0) . (2.5)

It is now straightforward to extend the Hilbert space defined in Definition 2.11 to the domain 𝜕Ω.
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Definition 2.12 (Global approximation space). We define the finite-dimensional Hilbert space 𝑊 ℓmax ⊂
𝐻

1
2 (𝜕Ω) ⊂ 𝐻− 1

2 (𝜕Ω) as the vector space

𝑊 ℓmax :=
{︁
𝑢 : 𝜕Ω → R such that ∀𝑖 ∈ {1, . . . , 𝑁} : 𝑢|𝜕Ω𝑖

∈𝑊 ℓmax (𝜕Ω𝑖)
}︁
,

equipped with the inner product

(𝑢, 𝑣)𝑊 ℓmax :=
𝑁∑︁
𝑖=1

(𝑢, 𝑣)𝑊 ℓmax (𝜕Ω𝑖)
∀𝑢, 𝑣 ∈𝑊 ℓmax . (2.6)

Galerkin discretisation of the integral equation (2.2)

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω) and let ℓmax ∈ N. Find 𝜈ℓmax ∈𝑊 ℓmax such that for all 𝜓ℓmax ∈𝑊 ℓmax it holds that

(𝒜*𝜈ℓmax , 𝜓ℓmax)𝐿2(𝜕Ω) =
4𝜋
𝜅0

(𝜎𝑓 , 𝜓ℓmax)𝐿2(𝜕Ω) . (2.7)

2.4. Main results

We begin this section by fixing some additional notation and introducing a new norm and inner product on
the space 𝐻

1
2 (𝜕Ω) that will aid our subsequent analysis.

Notation. We define 𝒞 (𝜕Ω) as the set of functions given by

𝒞 (𝜕Ω) := {𝑢 : 𝜕Ω → R : ∀𝑖 = 1, . . . , 𝑁 the restriction 𝑢|𝜕Ω𝑖
is a constant function} ,

and we observe that 𝒞 (𝜕Ω) is a closed subspace of dimension 𝑁 of 𝐻
1
2 (𝜕Ω) under the 𝐿2 (𝜕Ω) norm (since the

Slobodeckij semi-norm of constant functions is zero).

Notation. We define the function spaces 𝐻̆
1
2 (𝜕Ω) and 𝐻̆− 1

2 (𝜕Ω) as

𝐻̆
1
2 (𝜕Ω) :=

{︁
𝑢 ∈ 𝐻 1

2 (𝜕Ω) : (𝑢, 𝑣)𝐿2(𝜕Ω) = 0 ∀𝑣 ∈ 𝒞 (𝜕Ω)
}︁
,

𝐻̆− 1
2 (𝜕Ω) :=

{︁
𝜑 ∈ 𝐻− 1

2 (𝜕Ω) : ⟨𝜑, 𝑣⟩𝜕Ω = 0 ∀𝑣 ∈ 𝒞 (𝜕Ω)
}︁
,

and we observe that both sets are Banach spaces under the Sobolev–Slobodeckij norms introduced earlier.
Intuitively, the spaces 𝐻̆

1
2 (𝜕Ω) and 𝐻̆− 1

2 (𝜕Ω) are trace spaces that do not contain any piecewise constant
functions.The following simple lemma follows from these definitions.

Lemma 2.13. There exist complementary decompositions (in the sense of Brezis [5], Sect. 2.4) of the spaces
𝐻

1
2 (𝜕Ω) and 𝐻− 1

2 (𝜕Ω) given by

𝐻
1
2 (𝜕Ω) = 𝐻̆

1
2 (𝜕Ω)⊕ 𝒞 (𝜕Ω) , (2.8)

𝐻− 1
2 (𝜕Ω) = 𝐻̆− 1

2 (𝜕Ω)⊕ 𝒞 (𝜕Ω) .

Moreover, the projection operators P⊥0 : 𝐻
1
2 (𝜕Ω) → 𝐻̆

1
2 (𝜕Ω) and P0 : 𝐻

1
2 (𝜕Ω) → 𝒞 (𝜕Ω), Q⊥0 : 𝐻− 1

2 (𝜕Ω) →
𝐻̆− 1

2 (𝜕Ω), and Q0 : 𝐻− 1
2 (𝜕Ω) → 𝒞 (𝜕Ω) associated with these complementary decompositions are all bounded.

The complementary decomposition introduced through Lemma 2.13 is at the heart of our well-posedness
analysis as will become clear in Section 4.

Remark 2.14. Consider the complementary decomposition introduced through Lemma 2.13. It is a simple
exercise to show that for all 𝜆 ∈ 𝐻 1

2 (𝜕Ω) and all 𝜎 ∈ 𝐻− 1
2 (𝜕Ω) the following relations hold:⟨︀

Q0𝜎, P⊥0 𝜆
⟩︀
𝜕Ω

= 0 and
⟨︀
Q⊥0 𝜎, P0𝜆

⟩︀
𝜕Ω

= 0.
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In order to take full advantage of this decomposition of 𝐻
1
2 (𝜕Ω), it is necessary to introduce a new norm on

𝐻
1
2 (𝜕Ω).

Definition 2.15. We define on 𝐻
1
2 (𝜕Ω) a new norm ||| · ||| : 𝐻 1

2 (𝜕Ω) → R given by

∀𝜆 ∈ 𝐻 1
2 (𝜕Ω) : |||𝜆|||2 := ‖P0𝜆‖2𝐿2(𝜕Ω) + ⟨DtN𝜆, 𝜆⟩𝜕Ω .

Remark 2.16. We claim that the norm ||| · ||| is equivalent to the ‖ · ‖
𝐻

1
2 (𝜕Ω)

norm introduced in Section 2

(see Appendix A for a proof). Consequently, there exists a constant 𝑐equiv > 1 such that for all 𝜆 ∈ 𝐻 1
2 (𝜕Ω) it

holds that 1
𝑐equiv

|||𝜆||| ≤ ‖𝜆‖
𝐻

1
2 (𝜕Ω)

≤ 𝑐equiv|||𝜆|||. It is important to note that the equivalence constant 𝑐equiv is
independent of 𝑁 .

Henceforth, we adopt the convention that the Hilbert space 𝐻
1
2 (𝜕Ω) is equipped with the ||| · ||| norm defined

through Definition 2.15. The main advantage of using the new ||| · ||| norm is that it preserves the structure of
the complementary decomposition of 𝐻

1
2 (𝜕Ω). Indeed, for any function 𝜆 ∈ 𝐻 1

2 (𝜕Ω), we have

|||𝜆|||2 = ‖P0𝜆‖2𝐿2(𝜕Ω) + ⟨DtN𝜆, 𝜆⟩𝜕Ω = |||P0𝜆|||2 + |||P⊥0 𝜆|||2.

Remark 2.17. We remark that under this convention, due to the equivalence of norms, the definitions of the
dual space 𝐻− 1

2 (𝜕Ω) and the associated duality pairing ⟨·, ·⟩𝜕Ω remain unchanged. Thus, we can define a new
dual norm ||| · |||* : 𝐻− 1

2 (𝜕Ω) → R as the mapping with the property that for all 𝜎 ∈ 𝐻− 1
2 (𝜕Ω) it holds that

|||𝜎|||* := sup
0̸=𝜓∈𝐻

1
2 (𝜕Ω)

⟨𝜎, 𝜓⟩𝜕Ω

|||𝜓|||
,

and we observe that the new |||·|||* dual norm on 𝐻− 1
2 (𝜕Ω) is equivalent to the canonical dual norm ‖·‖

𝐻−
1
2 (𝜕Ω)

with equivalence constant that is once again independent of 𝑁 .

Remark 2.18. It is a simple exercise to prove that the Dirichlet-to-Neumann map DtN: 𝐻̆
1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω)
is invertible and satisfies for all 𝜆̃ ∈ 𝐻̆ 1

2 (𝜕Ω)

|||DtN𝜆̃|||* = |||𝜆̃|||.

This fact will be used often in the sequel.

Next, we define the higher regularity spaces and norms that are used in the error estimates.

Definition 2.19. Let 𝑠 ≥ 0 be a real number and let 𝒪x0 ⊂ R3 be an open ball of radius 𝑟 > 0 centred at the
point x0 ∈ R3. Then we define constructively the fractional Sobolev space 𝐻𝑠 (𝜕𝒪x) as the set

𝐻𝑠 (𝜕𝒪x0) :=
{︁
𝑢 : 𝜕𝒪x0 → R such that 𝑢 (x) =

∞∑︁
ℓ=0

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝑢]𝑚ℓ 𝒴𝑚ℓ
(︂

x− x0

|x− x0|

)︂

where all [𝑢]𝑚ℓ ∈ R satisfy
∞∑︁
ℓ=1

𝑚=+ℓ∑︁
𝑚=−ℓ

(︂
𝑙

𝑟

)︂2𝑠

([𝑢]𝑚ℓ )2 <∞
}︁
,

equipped with the inner product

(𝑢, 𝑣)𝐻𝑠(𝜕𝒪x0) := 𝑟2[𝑢]00 [𝑣]00 + 𝑟2
∞∑︁
ℓ=1

𝑚=+ℓ∑︁
𝑚=−ℓ

(︂
ℓ

𝑟

)︂2𝑠

[𝑢]𝑚ℓ [𝑣]𝑚ℓ ∀𝑢, 𝑣 ∈ 𝐻𝑠 (𝜕𝒪x0) . (2.9)

Additionally, we write ||| · |||𝐻𝑠(𝜕𝒪x0) to denote the norm induced by the inner-product (·, ·)𝐻𝑠(𝜕𝒪x0).
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Remark 2.20. Definition 2.19 is an intrinsic definition of the fractional Sobolev space 𝐻𝑠 (𝜕𝒪x0), which coin-
cides with the definition of these fractional Sobolev spaces involving the Sobolev–Slobodeckij inner product (see,
e.g., [15]). The equivalence follows from the fact that the spherical harmonics are eigenvectors of the self-adjoint
Laplace–Beltrami operator Δ𝜕𝒪x0

as discussed in, e.g., Section 7 of Chapter 1 in [37].

Definition 2.19 suggests a natural intrinsic definition of the fractional Sobolev spaces on 𝜕Ω.

Definition 2.21. Let 𝑠 ≥ 0 be a real number. Then we define the Hilbert space 𝐻𝑠 (𝜕Ω) as the set

𝐻𝑠 (𝜕Ω) :=
{︁
𝑢 : 𝜕Ω → R such that ∀𝑖 ∈ 1, . . . , 𝑁 : 𝑢|𝜕Ω𝑖

∈ 𝐻𝑠 (𝜕Ω𝑖)
}︁
,

equipped with the inner product

(𝑢, 𝑣)𝐻𝑠(𝜕Ω) :=
𝑁∑︁
𝑖=1

(𝑢, 𝑣)𝐻𝑠(𝜕Ω𝑖)
∀𝑢, 𝑣 ∈ 𝐻𝑠 (𝜕Ω) . (2.10)

Additionally, we write ||| · |||𝐻𝑠(𝜕Ω) to denote the norm induced by the inner-product (·, ·)𝐻𝑠(𝜕Ω).

Remark 2.22. A direct calculation shows that the norm ||| · |||
𝐻

1
2 (𝜕Ω)

coincides with the ||| · ||| norm defined

through Definition 2.15. Moreover, the ||| · |||
𝐻

1
2 (𝜕Ω)

norm coincides with the ‖·‖𝑊 ℓmax norm on the space 𝑊 ℓmax .

We are now ready to state our main results.

Theorem 2.23 (Error estimates). Let 𝑠 ≥ 0 be a real number, let ℓmax ∈ N, let 𝜎𝑓 ∈ 𝐻𝑠 (𝜕Ω), let
ℰ𝜎𝑓

: 𝐻− 1
2 (𝜕Ω) → R be the electrostatic energy functional defined through Definition 2.8, let 𝜈 ∈ 𝐻− 1

2 (𝜕Ω) be the
unique solution to the weak formulation (2.4) with right hand side given by 𝜎𝑓 , let 𝜈ℓmax ∈𝑊 ℓmax be the unique
solution to the Galerkin discretisation defined through equation (2.7), and let Q⊥0 : 𝐻− 1

2 (𝜕Ω) → 𝐻̆− 1
2 (𝜕Ω)

denote the projection operator defined through Lemma 2.13. Then there exists a constant 𝐶main > 0 that depends
on the radii of the open balls, the dielectric constants and the minimal inter-sphere separation distance but is
independent of both 𝑠 and the number of open balls 𝑁 such that

|||𝜈 − 𝜈ℓmax |||* ≤ 𝐶main

(︂
max 𝑟𝑗
ℓmax + 1

)︂𝑠+ 1
2
(︂
|||Q⊥0 𝜈|||𝐻𝑠(𝜕Ω) +

8𝜋
𝜅0
|||Q⊥0 𝜎𝑓 |||𝐻𝑠(𝜕Ω)

)︂
⃒⃒
ℰ𝜎𝑓

(𝜈)− ℰ𝜎𝑓
(𝜈ℓmax)

⃒⃒
≤ 𝐶main

(︂
max 𝑟𝑖
ℓmax + 1

)︂𝑠+ 1
2

|||𝒱𝜎𝑓 |||
(︂
|||Q⊥0 𝜈|||𝐻𝑠(𝜕Ω) +

8𝜋
𝜅0
|||Q⊥0 𝜎𝑓 |||𝐻𝑠(𝜕Ω)

)︂
.

Theorem 2.23 is a standard a priori error estimate for the approximate induced surface charge and approx-
imate electrostatic energy obtained by solving the Galerkin discretisation (2.7). We emphasise that the most
important aspect of this error estimate is that the convergence rate pre-factor 𝐶main is explicitly independent
of the number of objects 𝑁 . Consequently, for any geometry in the family of geometries {Ωℱ}ℱ∈ℐ satisfying
assumptions (A1)–(A3), the following holds: Given a fixed number of degrees of freedom ℓmax per sphere, the
relative error in the induced surface charge and in the total electrostatic energy normalised by the free-charge
electrostatic energy does not increase as 𝑁 increases. This implies in particular that for any configuration in the
family of geometries {Ωℱ}ℱ∈ℐ , in order to guarantee the same relative accuracy in the induced surface charge,
one does not need to increase the number of degrees of freedom per sphere as 𝑁ℱ increases.

Theorem 2.24 (Exponential convergence). Let ℓmax ∈ N, let 𝐶main denote the convergence rate pre-factor
from Theorem 2.23, let 𝜎𝑓 ∈ 𝐶∞ (𝜕Ω) be analytic on 𝜕Ω, let ℰ𝜎𝑓

: 𝐻− 1
2 (𝜕Ω) → R be the electrostatic energy

functional defined through Definition 2.8, let 𝜈 ∈ 𝐻− 1
2 (𝜕Ω) be the unique solution to the weak formulation (2.4)

with right hand side given by 𝜎𝑓 , and let 𝜈ℓmax ∈ 𝑊 ℓmax be the unique solution to the Galerkin discretisation
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defined through equation (2.7). For ℓmax sufficiently large, if 𝜈 is analytic on 𝜕Ω then there exists a constant
𝐶𝜈,𝜎𝑓

> 0 depending on the exact solution 𝜈 and the free charge 𝜎𝑓 such that

1√
𝑁
|||𝜈 − 𝜈ℓmax |||* ≤

√︁
8𝜋max 𝑟2𝑗 (2 max 𝑟𝑗)

1
4 𝐶𝜈,𝜎𝑓

𝐶main exp
(︂
− 1

4𝐶𝜈,𝜎𝑓

ℓmax + 1
max 𝑟𝑗

+
1
2

)︂
,

1√
𝑁

⃒⃒
ℰ𝜎𝑓

(𝜈)− ℰ𝜎𝑓
(𝜈ℓmax)

⃒⃒
≤
√︁

8𝜋max 𝑟2𝑗 (2 max 𝑟𝑗)
1
4 𝐶𝜈,𝜎𝑓

𝐶main|||𝒱𝜎𝑓 ||| exp
(︂
− 1

4𝐶𝜈,𝜎𝑓

ℓmax + 1
max 𝑟𝑗

+
1
2

)︂
·

Definition 2.12 of the approximation space implies that the numerical method defined by equation (2.7)
is essentially a spectral Galerkin method, which are well-known to demonstrate exponential convergence for
sufficiently smooth solution functions. Theorem 2.24 provides a proof of this intuitive result. We emphasise
that the hypotheses of Theorem 2.24 are analogous to the hypotheses typically assumed by the discontinuous
Galerkin finite element community for ℎ𝑝 finite elements (see, e.g., [29–31]).

We conclude this section by emphasising that, taken together, Theorems 2.23 and 2.24 establish that the
accuracy of our numerical algorithm is robust with respect to the number of open balls 𝑁 for any family of
geometries satisfying the assumptions (A1)–(A3). Of course, in order to prove that the numerical method is
linear scaling in accuracy, we would have to prove in addition that for a fixed number of degrees of freedom per
sphere, the computational cost of solving the linear system obtained from the Galerkin discretisation (2.7) scales
as 𝒪(𝑁). Numerical evidence (see Sect. 3 and also [34]) suggests that this is indeed the case. As mentioned
in the introduction however, the current article is concerned with numerical analysis. A detailed complexity
analysis of this numerical method is the subject of a second article [27].

2.5. Existing literature and limitations

Let us first establish our earlier claim that the boundary integral equations (2.2) is, essentially, an integral
equation of the second kind.

Lemma 2.25. Assume the setting of Section 2.1. The boundary integral equation (2.2) can be written as an
integral equation of the second kind.

Proof. Consider the BIE (2.2). Standard results on boundary integral operators (see, e.g., [49], Sect. 3.7) imply
that

DtN𝒱 =
1
2
𝐼 +𝒦*,

where 𝐼 : 𝐻− 1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) is the identity operator.
The boundary integral equation (2.2) then implies that

4𝜋
𝜅0
𝜎𝑓 = 𝜈 − 𝜅0 − 𝜅

𝜅0
(DtN𝒱) 𝜈 = 𝜈 − 𝜅0 − 𝜅

𝜅0

(︂
1
2
𝐼 +𝒦*

)︂
𝜈 =

𝜅0 + 𝜅

2𝜅0
𝜈 − 𝜅0 − 𝜅

𝜅0
𝒦*𝜈.

Consequently, we obtain that

4𝜋
𝜅0 + 𝜅

𝜎𝑓 =
1
2
𝜈 − 𝜅0 − 𝜅

𝜅0 + 𝜅
𝒦*𝜈 =

(︂
1
2
𝐼 − 𝜅0 − 𝜅

𝜅0 + 𝜅
𝒦*
)︂
𝜈. (2.11)

This completes the proof. �

Lemma 2.25 suggests that we might appeal to the classical well-posedness analysis of second kind integral
equations in order to establish that the weak formulation (2.4) is well-posed. Broadly speaking, there are two
popular approaches in the literature to establishing the well-posedness of second kind integral equations.
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The traditional approach is based on recognising that the boundary integral operator 𝒦 : 𝐿2 (𝜕Ω) → 𝐿2 (𝜕Ω)
is compact if Ω is a 𝐶1 domain (which is indeed the case for the current problem). It follows that the BIE (2.11)
can be viewed as an operator equation on 𝐿2 (𝜕Ω) involving a Fredholm operator of index 0, and well-posedness
can be established by proving that the underlying operator is injective. This approach was first developed by
Fabes et al. [18]. In the general case when the domain Ω− is only Lipschitz, the operator 𝒦 is no longer compact
on 𝐿2 (𝜕Ω) but invertibility of the operator 1

2𝐼−
𝜅0−𝜅
𝜅0+𝜅

𝒦 on 𝐿2 (𝜕Ω) can still be established as proven by Gregory
Verchota in 1984 [54]. These results can then be extended to the Sobolev spaces 𝐻𝑠 (𝜕Ω) (see, e.g., the work of
Johannes Elschner [16]).

The primary issue with the above approaches is the following: Both analyses establish the invertibility of
the underlying boundary integral operator indirectly, by showing that the operator is injective. Thus, we are
unable to obtain closed form expressions for the stability constants which means that we are unable to determine
whether or not these constants are independent of 𝑁 .

A second, more recent approach due to Steinbach and Wendland [32, 52] (see also the book of Sauter and
Schwab [49]) is based on variational techniques. This approach can be used to establish that the operator
1
2𝐼 −

𝜅0−𝜅
𝜅0+𝜅

𝒦 is both bounded below and a contraction on 𝐻
1
2 (𝜕Ω) with respect to the inner product induced

by the inverse single layer boundary operator 𝒱−1. This approach is based on the classical work of C. Neumann
from the early 20th century. Martin Costabel has published a fascinating article on the historical development
of C. Neumann’s work which also contains the core idea of the proof [13].

There are three fundamental issues with this variational approach. First, the lower bound constant for the
operator 1

2𝐼 −
𝜅0−𝜅
𝜅0+𝜅

𝒦 depends – amongst others – on the coercivity constant of the hypersingular boundary
operator, and it is a priori unclear how this coercivity constant behaves as the number of objects 𝑁 is increased.
Second, the analysis takes place in the Sobolev space 𝐻

1
2 (𝜕Ω) equipped with the inner-product induced by the

inverse single layer boundary operator 𝒱−1, and this inner-product is completely non-local. Consequently, in
order to qualitatively compare the relative error for different values of 𝑁 , it becomes necessary to introduce
norm equivalence constants and switch to the 𝐻

1
2 (𝜕Ω) norm. Unfortunately, these equivalence constants involve

the continuity constant of 𝒱, which increases as the number of objects 𝑁 increases. Finally, given our choice
of approximation space, the Galerkin discretisation does not automatically inherit inf-sup stability from the
infinite-dimensional case.

In view of the preceding discussion, we felt it necessary to introduce a new well-posedness analysis for the weak
formulation (2.4) and the Galerkin discretisation (2.7). The details of our analysis are presented in Section 4 but
we remark briefly that we adopt an indirect approach and take advantage of the complementary decomposition
of the space 𝐻

1
2 (𝜕Ω) introduced in Lemma 2.13. We will show that this decomposition leads to a splitting of

the weak formulation and Galerkin discretisation which then allows us to obtain suitable continuity and inf-sup
constants that are indeed explicitly independent of the number of objects 𝑁 .

3. Numerical results

The goal of this section is to briefly provide numerical evidence in support of our main results Theorems 2.23
and 2.24. Our numerical experiments will therefore show that

– For a fixed number of degrees of freedom per sphere and geometries satisfying the assumptions (A1)–(A3),
the average error in the induced surface charge remains bounded as the number of open balls 𝑁 in the
system is increased.

– For a fixed number of open balls 𝑁 in the system, the average error in the induced surface charge converges
exponentially as the number of degrees of freedom per sphere is increased.

In addition, in order to anticipate future work on computational aspects of the numerical algorithm, we also
provide numerical evidence indicating that for a fixed number of degrees of freedom per sphere and geometries
satisfying the assumptions (A1)–(A3), the number of GMRES iterations required to solve the linear system
arising from the Galerkin discretisation (2.7) remains bounded as the number of open balls 𝑁 in the system is
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Figure 1. The geometric settings for both sets of numerical experiments. (A) Dielectric spheres
arranged on a three dimensional, regular cubic lattice with edge length 10. (B) Dielectric spheres
arranged on a three dimensional, regular cubic lattice with edge length 5.

increased. Since we use the fast multipole method (FMM) in order to compute matrix vector products, these
numerical results suggest that the computational cost of solving the underlying linear system scales as 𝒪(𝑁).

We consider the following geometric setting: The external medium is assumed to be vacuum which has a
dielectric constant 𝜅0 = 1. Two types of dielectric spheres are considered, one with radius 1, dielectric constant
10, and net negative free charge, and the other with radius 2, dielectric constant 5 and net positive free charge.
Moreover, in order to include the effect of the minimal inter-sphere separation distance, we consider two sets of
numerical experiments. The first involves the dielectric spheres arranged on a three dimensional, regular cubic
lattice with edge length 10 and the other involves a similar lattice with a smaller edge length of 5 as displayed
in Figures 1a and 1b, respectively. All numerical simulations were run using a relative tolerance of 10−14.

Figures 2a and 2b display the average error in the induced surface charge as the number of dielectric spheres
𝑁 is increased for the two types of lattices. The reference solution in both cases was constructed by setting
the maximum degree of spherical harmonics in the approximation space on each sphere as ℓmax = 20. The
approximate solutions were all constructed using ℓmax = 6.

Figures 3a and 3b display the average error in the induced surface charge as the maximum degree of spherical
harmonics ℓmax in the approximation space on each sphere is increased. The number of dielectric spheres was
chosen as 𝑁 = 215. Once again, the reference solution in both cases was constructed by setting the maximum
degree of spherical harmonics as ℓmax = 20.

Finally, Figures 4a and 4b display the number of GMRES iterations required to solve the linear system arising
from the Galerkin discretisation of the integral equation (2.2) for the two types of lattices. The maximum degree
of spherical harmonics in the approximation space on each sphere was chosen as ℓmax = 6.

It is readily seen that these numerical results are in agreement with the conclusions of our main results
Theorems 2.23 and 2.24. Furthermore, we observe that the average error and the number of GMRES iterations
required to solve the linear system both increase as the minimum distance between two balls decreases.
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Figure 2. Log-lin plot of the average error in the induced surface charge versus the number
of dielectric spheres 𝑁 . These numerical results support the conclusions of Theorem 2.23. (A)
Results for the cubic lattice with edge length 10. (B) Results for the cubic lattice with edge
length 5.

Figure 3. Log-lin plot of the average error in the induced surface charge versus the maximum
degree ℓmax of spherical harmonics in the approximation space on each open sphere. These
numerical results support the conclusions of Theorem 2.24. (A) Results for the cubic lattice
with edge length 10. (B) Results for the cubic lattice with edge length 5.
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Figure 4. The number of GMRES iterations required to solve the linear system arising from
the Galerkin discretisation of the integral equation (2.2). (A) Results for the cubic lattice with
edge length 10. (B) Results for the cubic lattice with edge length 5.

4. Proofs

Assume the setting of Section 2.1. As mentioned in Section 2.5, we need to introduce a new, indirect analysis
in order to prove our main results Theorems 2.23 and 2.24. To this end, we begin by observing that the single
layer boundary operator 𝒱 : 𝐻− 1

2 (𝜕Ω) → 𝐻
1
2 (𝜕Ω) is a bijection. Therefore, the integral equation (2.2) can in

fact be reformulated in terms of an unknown surface electrostatic potential 𝜆 := 𝒱𝜈 ∈ 𝐻 1
2 (𝜕Ω).

Integral equation formulation for the electrostatic potential

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω). Find 𝜆 ∈ 𝐻 1

2 (𝜕Ω) with the property that

𝒜𝜆 = 𝜆− 𝒱DtN
(︁𝜅0 − 𝜅

𝜅0
𝜆
)︁

=
4𝜋
𝜅0
𝒱𝜎𝑓 . (4.1)

Naturally, the integral equation (4.1) has a straightforward weak formulation.

Weak formulation of the integral equation (4.1)

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω) and let 𝒜 : 𝐻

1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) be the operator defined through Definition 2.9. Find

𝜆 ∈ 𝐻 1
2 (𝜕Ω) such that for all 𝜎 ∈ 𝐻− 1

2 (𝜕Ω) it holds that

⟨𝜎,𝒜𝜆⟩𝜕Ω =
4𝜋
𝜅0
⟨𝜎,𝒱𝜎𝑓 ⟩𝜕Ω . (4.2)

The integral equation formulation (4.1) now leads to a corresponding Galerkin discretisation for an unknown
approximate surface electrostatic potential 𝜆ℓmax ∈𝑊 ℓmax .
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Galerkin discretisation of the integral equation (4.1)

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω) and let ℓmax ∈ N. Find ̂︀𝜆ℓmax ∈𝑊 ℓmax such that for all ̂︀𝜓ℓmax ∈𝑊 ℓmax it holds that(︁ ̂︀𝜓ℓmax ,𝒜̂︀𝜆ℓmax

)︁
𝐿2(𝜕Ω)

=
4𝜋
𝜅0

(︁ ̂︀𝜓ℓmax ,𝒱𝜎𝑓
)︁
𝐿2(𝜕Ω)

. (4.3)

We emphasise that for the purpose of applications, one is typically interested in calculating either the induced
surface charge 𝜈 ∈ 𝐻− 1

2 (𝜕Ω) or the total electrostatic energy ℰ , which itself can be obtained directly from the
induced surface charge 𝜈, and this is precisely why our main results Theorems 2.23 and 2.24 have been formulated
in terms of the induced surface charge 𝜈 rather than the surface electrostatic potential 𝜆 ∈ 𝐻 1

2 (𝜕Ω). One may
therefore wonder why we need introduce the weak formulation (4.2) for the surface electrostatic potential 𝜆 and
its Galerkin discretisation (4.3) at all.

The key difficulty in our analysis is that the continuity constant of the relevant boundary integral operator
and the discrete inf-sup constant both appear as pre-factors in the quasi-optimality bound and hence also
the error estimates appearing in Theorems 2.23 and 2.24. It therefore becomes essential to obtain both a
continuity constant and an inf-sup constant that is independent of the number of balls 𝑁 in the 𝑁 -body
problem. Unfortunately, we have been unable to obtain such 𝑁 -independent continuity and stability constants
if we adopt a direct analysis of the weak formulation (2.4) for 𝜈 and its Galerkin discretisation (2.7).

The weak formulation (4.2) and the Galerkin discretisation (4.3) have thus been introduced as analytical tools
that will aid our numerical analysis. As we will later show, the difficulties highlighted above can be avoided if we
analyse first the weak formulation (4.2) and its Galerkin discretisation (4.3) involving the exact and approximate
surface electrostatic potential and then obtain as a corollary, analogous results for the weak formulation (2.4)
and the Galerkin discretisation (2.7) and also proofs for Theorems 2.23 and 2.24.

We divide the remainder of this section into three parts. We first prove that the weak formulation (4.2) and
the Galerkin discretisation (4.3) are well-posed, and obtain a partial quasi-optimality result for the approximate
surface electrostatic potential. Next, we prove that the weak formulation (2.4) and the Galerkin discretisation
(2.7) are also well-posed, and obtain an approximation result for the induced surface charge. Finally, we provide
proofs for Theorems 2.23 and 2.24.

4.1. Well-posedness analysis for the surface electrostatic potential

4.1.1. The classical analysis of the infinite-dimensional problem and its limitations

The first step in the well-posedness analysis of the weak formulation (4.2) of the boundary integral equation
(4.1) is to prove the continuity of the underlying linear boundary integral operator 𝒜 : 𝐻

1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω)

defined through Definition 2.9.

Lemma 4.1. Let the constants 𝑐𝒱 and 𝑐𝒦 be defined as in Properties 1 and 3, respectively of Section 2.1, let
‖𝒦‖𝐿2(𝜕Ω) denote the 𝐿2 operator norm of the double layer boundary operator 𝒦 : 𝐻

1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω), and let

the constant 𝐶𝒜 be defined as

𝐶𝒜 := 1 + max
⃒⃒⃒𝜅− 𝜅0

𝜅0

⃒⃒⃒√︃(︁1
2

+ ‖𝒦‖𝐿2(𝜕Ω)

)︁2

(1 + max 𝑟𝑖) +
𝑐2equiv𝑐

3
𝒦

𝑐𝒱
·

Then the linear operator 𝒜 : 𝐻
1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) defined in Definition 2.9 satisfies

‖𝒜‖OP := sup
0̸=𝜆∈𝐻

1
2 (𝜕Ω)

|||𝒜𝜆|||
|||𝜆|||

≤ 𝐶𝒜.
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Proof. Let 𝜆 ∈ 𝐻 1
2 (𝜕Ω). Then it holds that

|||𝒜𝜆||| =
⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜆− 𝒱DtN

(︁𝜅0 − 𝜅

𝜅0
𝜆
)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒

≤ |||𝜆|||+
⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝒱DtN

(︁𝜅0 − 𝜅

𝜅0
𝜆
)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒

.

Let 𝜆𝜅 := 𝜅0−𝜅
𝜅0

𝜆. Using Definition 2.15 of the ||| · ||| norm we obtain

|||𝒱DtN𝜆𝜅|||2 = ‖P0𝒱DtN𝜆𝜅‖2𝐿2(𝜕Ω) + ⟨DtN𝒱DtN𝜆𝜅,𝒱DtN𝜆𝜅⟩𝜕Ω .

Let us first focus on the second term. Using standard results on boundary integral operators (see, e.g., [49],
Sects. 3.7, 3.8 and Thms. 3.5.3, 3.8.7), we obtain

⟨DtN𝒱DtN𝜆𝜅,𝒱DtN𝜆𝜅⟩𝜕Ω =
⟨︀
𝒱−1𝒱DtN𝒱DtN𝜆𝜅,𝒱DtN𝜆𝜅

⟩︀
𝜕Ω

=
(︁
(𝒱DtN)2 𝜆𝜅,𝒱DtN𝜆𝜅

)︁
𝒱−1

≤
⃦⃦

(𝒱DtN)2 𝜆𝜅
⃦⃦
𝒱−1

⃦⃦
𝒱DtN𝜆𝜅

⃦⃦
𝒱−1

≤ 𝑐2𝒦 ‖𝜆𝜅‖𝒱−1 𝑐𝒦 ‖𝜆𝜅‖𝒱−1

≤
𝑐3𝒦𝑐

2
equiv

𝑐𝒱
|||𝜆𝜅|||2 ≤

𝑐3𝒦𝑐
2
equiv

𝑐𝒱
max

⃒⃒⃒𝜅− 𝜅0

𝜅0

⃒⃒⃒2
|||𝜆|||2.

Next, we consider the first term. The Calderón identities (see, e.g., [49], Thm. 3.8.7) imply that

‖P0𝒱DtN𝜆𝜅‖2𝐿2(𝜕Ω) =
⃦⃦⃦⃦
P0

(︁1
2
𝐼 +𝒦

)︁
𝜆𝜅

⃦⃦⃦⃦2

𝐿2(𝜕Ω)

≤
(︂

1
2

+ ‖𝒦‖𝐿2(𝜕Ω)

)︂2

‖𝜆𝜅‖2𝐿2(𝜕Ω)

≤
(︂

1
2

+ ‖𝒦‖𝐿2(𝜕Ω)

)︂2

max
⃒⃒⃒𝜅− 𝜅0

𝜅0

⃒⃒⃒2
‖𝜆‖2𝐿2(𝜕Ω).

Next, we observe that

‖𝜆‖2𝐿2(𝜕Ω) = ‖P0𝜆‖2𝐿2(𝜕Ω) + ‖P⊥0 𝜆‖2𝐿2(𝜕Ω) = |||P0𝜆|||2 + ‖P⊥0 𝜆‖2𝐿2(𝜕Ω)

≤ |||P0𝜆|||2 + max 𝑟𝑖|||P⊥0 𝜆|||2 ≤ (1 + max 𝑟𝑖) |||𝜆|||2.

We conclude that⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝒱DtN

(︁𝜅0 − 𝜅

𝜅0
𝜆
)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒

≤ max
⃒⃒⃒𝜅− 𝜅0

𝜅0

⃒⃒⃒√︃(︁1
2

+ ‖𝒦‖𝐿2(𝜕Ω)

)︁2

(1 + max 𝑟𝑖) +
𝑐3𝒦𝑐

2
equiv

𝑐𝒱
|||𝜆|||.

The proof now follows. �

Remark 4.2. Consider the setting of Lemma 4.1. The continuity constant 𝐶𝒜 of the operator 𝒜 as determined
in Lemma 4.1 depends on the operator norm of the double layer boundary operator 𝒦. Standard bounds for
this operator norm depend on the diameter of the domain Ω− (see, e.g., [19], Chap. 7 or [49], Chap. 3), which
implies that the continuity constant 𝐶𝒜 could potentially increase as the number of open balls 𝑁 increases.

Notice that the dependence of the continuity constant 𝐶𝒜 on the operator norm ‖𝒦‖𝐿2(𝜕Ω) appears only when
evaluating the operator norm ‖𝒱DtN‖𝐿2(𝜕Ω). In principle, it is possible to refine the estimate for the operator
norm ‖𝒱DtN‖𝐿2(𝜕Ω) using the addition theorem for spherical harmonics and the so-called Multipole-to-Local
operators introduced by Greengard and Rokhlin [24]. Unfortunately, it turns out that for a completely arbitrary
geometry Ω− = ∪𝑁𝑖=1Ω𝑖, it is not possible to eliminate the dependence of the continuity constant 𝐶𝒜 on the
number of open balls 𝑁 . Indeed, an explicit counter-example can be constructed.

Obviously, this degradation of the continuity constant poses a serious problem if wish to obtain error estimates
independent of 𝑁 . Fortunately, as we will now show, it is possible to circumvent this issue by taking advantage
of the particular structure of the BIEs (2.2) and (4.1).
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4.1.2. The new analysis of the infinite-dimensional problem

In principle, the next step in our analysis would be to prove that the weak formulation (4.2) is well-posed.
In view of Remark 4.2 however, we cannot obtain 𝑁 -independent stability and continuity constants using a
straightforward analysis of the boundary integral operator 𝒜, and we must therefore adopt a smarter, indirect
approach. To this end, we will appeal to the complementary decompositions of the spaces𝐻

1
2 (𝜕Ω) and𝐻− 1

2 (𝜕Ω)
introduced in Lemma 2.13. This complementary decomposition, together with Remark 2.14, allows us to rewrite
the weak formulation (4.2) in terms of trial and test functions that belong to the spaces 𝒞 (𝜕Ω), 𝐻̆

1
2 (𝜕Ω), and

𝐻̆− 1
2 (𝜕Ω).

Modified weak formulation of the integral equation (4.1)

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω). Find functions

(︁
𝜆0, 𝜆̃

)︁
∈ 𝒞 (𝜕Ω) × 𝐻̆

1
2 (𝜕Ω) such that for all test functions (𝜎0, 𝜎̃) ∈

𝒞 (𝜕Ω)× 𝐻̆− 1
2 (𝜕Ω) it holds that

⟨𝜎0, 𝜆0⟩𝜕Ω −
⟨
𝜎0,𝒱DtN

(︂
𝜅0 − 𝜅

𝜅0
𝜆̃

)︂⟩
𝜕Ω

=
4𝜋
𝜅0
⟨𝜎0,𝒱𝜎𝑓 ⟩𝜕Ω , (4.4)

⟨
𝜎̃, 𝜆̃

⟩
𝜕Ω
−
⟨
𝜎̃,𝒱DtN

(︂
𝜅0 − 𝜅

𝜅0
𝜆̃

)︂⟩
𝜕Ω

=
4𝜋
𝜅0
⟨𝜎̃,𝒱𝜎𝑓 ⟩𝜕Ω . (4.5)

It is a simple exercise to prove that the modified weak formulation (4.4) and (4.5) is indeed equivalent to the
weak formulation (4.2).

Consider now equations (4.4) and (4.5). We observe that equation (4.5) involves only the unknown function
𝜆̃ ∈ 𝐻̆ 1

2 (𝜕Ω). It is therefore clear that if equation (4.5) is uniquely solvable, then equation (4.4) is also uniquely
solvable, and hence the weak formulation (4.1) is well-posed. Following standard practice in functional analysis,
we prove unique solvability of equation (4.5) by establishing that the underlying reduced bilinear form is bounded
and satisfies the inf-sup condition.

Remark 4.3. In principle, one could use the same complementary decomposition to split the weak formula-
tion (2.4) for the induced surface charge 𝜈. In this case however, we do not obtain the useful “upper-triangular”
structure highlighted above, and consequently our subsequent analysis cannot be applied.

Definition 4.4. We define the “reduced” bilinear form 𝑎̃ : 𝐻̆
1
2 (𝜕Ω)× 𝐻̆− 1

2 (𝜕Ω) → R as the mapping with the
property that for all 𝜆̃ ∈ 𝐻̆ 1

2 (𝜕Ω) and all 𝜎̃ ∈ 𝐻̆− 1
2 (𝜕Ω) it holds that

𝑎̃
(︁
𝜆̃, 𝜎̃

)︁
:=
⟨
𝜎̃, 𝜆̃

⟩
𝜕Ω
−
⟨
𝜎̃,𝒱DtN

(︂
𝜅0 − 𝜅

𝜅0
𝜆̃

)︂⟩
𝜕Ω

.

We first prove that the reduced bilinear form 𝑎̃ is bounded.

Lemma 4.5. Let the constant 𝐶𝒜 be defined as

𝐶𝒜 := 1 + max
⃒⃒⃒⃒
𝜅− 𝜅0

𝜅0

⃒⃒⃒⃒
·

(︃
𝑐

3
2
𝒦𝑐equiv√
𝑐𝒱

)︃
, (4.6)

and let the bilinear form 𝑎̃ : 𝐻̆
1
2 (𝜕Ω)×𝐻̆− 1

2 (𝜕Ω) → R be defined as in Definition 4.4. Then for all 𝜆̃ ∈ 𝐻̆ 1
2 (𝜕Ω)

and all 𝜎̃ ∈ 𝐻̆− 1
2 (𝜕Ω) it holds that

|𝑎̃
(︁
𝜆̃, 𝜎̃

)︁
| ≤ 𝐶𝒜|||𝜆||| |||𝜎|||

*.
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Proof. Let the linear operator 𝒜 : 𝐻̆
1
2 (𝜕Ω) → 𝐻̆

1
2 (𝜕Ω) be defined as 𝐴 := P⊥0 𝒜P⊥0 . Then 𝒜 is the linear

operator associated with the reduced bilinear form 𝑎̃. Since |||P⊥0 𝜆||| ≤ |||𝜆||| for all 𝜆 ∈ 𝐻
1
2 (𝜕Ω), the proof

becomes identical to the first part of the proof of Lemma 4.1 with one minor modification. �

Remark 4.6. Consider the setting of Lemma 4.5 and the continuity constant 𝐶𝒜 of the modified boundary
integral operator 𝒜. We observe that the constant 𝑐𝒦 is bounded by one, and therefore the only non quantified
constant appearing in the expression of 𝐶𝒜 is the coercivity constant 𝑐𝒱 . A priori, it is not clear how this
coercivity constant depends on the geometrical setting of our problem including the number of open balls 𝑁
in our system. The next step in our analysis therefore, is to obtain a closed form expression for this coercivity
constant and to show in particular that it does not explicitly depend on 𝑁 .

We first require the following lemma:

Lemma 4.7. There exist constants 𝑐int, 𝑐ext > 0 that are independent of the number 𝑁 of open balls such that
for all harmonic functions 𝑣 ∈ 𝐻1 (Ω−) and 𝑤 ∈ 𝐻1 (Ω+) it holds that

‖𝛾−𝑁𝑣‖𝐻− 1
2 (𝜕Ω)

≤ 𝑐int‖∇𝑣‖𝐿2(Ω−),

and

‖𝛾+
𝑁𝑤‖𝐻− 1

2 (𝜕Ω)
≤ 𝑐ext‖∇𝑤‖𝐿2(Ω+).

Additionally, the constant 𝑐int depends only on the radii {𝑟𝑗}𝑁𝑗=1 of the open balls while the constant 𝑐ext

depends on both the radii of the open balls as well as the minimum inter-sphere separation distance, i.e.,
min𝑖,𝑗∈{1,...,𝑁}

𝑖 ̸=𝑗

(︀
|x𝑖 − x𝑗 | − 𝑟𝑖 − 𝑟𝑗

)︀
.

Proof. The first bound is straightforward to prove. Indeed, let ℰ int
ℋ : 𝐻

1
2 (𝜕Ω) → 𝐻1 (Ω−) be defined as the

interior harmonic extension operator on Ω−. A direct calculation yields

‖𝛾−𝑁𝑣‖𝐻− 1
2 (𝜕Ω)

= sup
0̸=𝜆∈𝐻

1
2 (𝜕Ω)

⟨𝛾−𝑁𝑣, 𝜆⟩𝜕Ω

‖𝜆‖
𝐻

1
2 (𝜕Ω)

= sup
0̸=𝜆∈𝐻

1
2 (𝜕Ω)

∫︀
Ω−
∇𝑣 (𝑥) · ∇ℰ int

ℋ 𝜆 (𝑥) d𝑥
‖𝜆‖

𝐻
1
2 (𝜕Ω)

≤ ‖∇𝑣‖𝐿2(Ω−) sup
0 ̸=𝜆∈𝐻

1
2 (𝜕Ω)

‖∇ℰ int
ℋ 𝜆‖𝐿2(Ω−)

‖𝜆‖
𝐻

1
2 (𝜕Ω)

≤ ‖∇𝑣‖𝐿2(Ω−) sup
0 ̸=𝜆∈𝐻

1
2 (𝜕Ω)

‖ℰ int
ℋ 𝜆‖𝐻1(Ω−)

‖𝜆‖
𝐻

1
2 (𝜕Ω)

≤ 𝑐equiv‖ℰ int
ℋ ‖OP‖∇𝑣‖𝐿2(Ω−),

where the 𝑁 -independent norm equivalence constant 𝑐equiv arises due to the fact that by our convention,
𝐻

1
2 (𝜕Ω) is equipped with the new ||| · ||| given by Definition 2.15 rather than the Sobolev–Slobodeckij norm

‖ ·‖
𝐻

1
2 (𝜕Ω)

. Since Ω− is simply the union of non-intersecting open balls, i.e., Ω− = ∪𝑁𝑗=1Ω𝑗 , it is easy to see that

the operator norm ‖ℰ int
ℋ ‖OP depends only on the radii {𝑟𝑗}𝑁𝑗=1 of the open balls {Ω𝑗}𝑁𝑗=1 and is independent of

the number 𝑁 of open balls. This completes the proof for the first bound.
In order to compute the second bound, we require more work. The essential idea is to mimic the proof for

the first bound but this requires us to first define an extension operator ℰexternal : 𝐻
1
2 (𝜕Ω) → 𝐻1 (Ω+) whose

operator norm is also independent of 𝑁 . We proceed in four steps.
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Step 1. We first define a family of one-dimensional continuously differentiable cutoff functions. To this end,
let 𝑟 > 0 and 𝜖 > 0 be real numbers. We define the cubic polynomial 𝑝𝑟,𝜖 : R → R as

∀𝑥 ∈ R : 𝑝𝑟,𝜖(𝑥) =
1
𝜖3

(︁
2𝑥3 − 3 (2𝑟 + 𝜖)𝑥2 + 6𝑟 (𝑟 + 𝜖)𝑥− (𝑟 + 𝜖)2 (2𝑟 − 𝜖)

)︁
.

Then for any 𝑟 > 0 and 𝜖 > 0 we define the cutoff function 𝜑𝑟,𝜖 : R → [0, 1] as the mapping with the mapping
with the property that for all 𝑥 ∈ R it holds that

𝜑𝑟,𝜖(𝑥) :=

⎧⎪⎨⎪⎩
1 if 𝑥 ≤ 𝑟,

𝑝𝑟,𝜖(𝑥) if 𝑥 ∈ (𝑟, 𝑟 + 𝜖) ,
0 if 𝑥 ≥ 𝑟 + 𝜖.

Let 𝑟 > 0 and 𝜖 > 0 be fixed. It can readily be verified that the cutoff function 𝜑𝑟,𝜖 ∈ 𝐶1 (R), ‖𝜑𝑟,𝜖‖𝐿∞(R) = 1,
and furthermore that ‖𝜑′𝑟,𝜖‖𝐿∞(R) = 3

2𝜖 .

Step 2. Let 𝑖 ∈ {1, . . . , 𝑁}. We define the (exterior) harmonic extension operator ℰext
𝑖,ℋ : 𝐻

1
2 (𝜕Ω𝑖) →

𝐻1
(︀
R3 ∖ Ω𝑖

)︀
as follows: Given any 𝜆𝑖 ∈ 𝐻

1
2 (𝜕Ω𝑖), there exist coefficients [𝜆𝑖]𝑚ℓ , ℓ ∈ N0, −ℓ ≤ 𝑚 ≤ ℓ such that

for all x ∈ 𝜕Ω𝑖 it holds that

𝜆𝑖 (x) =
∑︁
ℓ=0

𝑚=ℓ∑︁
𝑚=−ℓ

[𝜆𝑖]𝑚ℓ 𝒴𝑚ℓ
(︂

x− x𝑖
|x− x𝑖|

)︂
·

We therefore define

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x) :=

∞∑︁
ℓ=0

𝑚=ℓ∑︁
𝑚=−ℓ

[𝜆𝑖]𝑚ℓ

(︂
𝑟𝑖

|x− x𝑖|

)︂ℓ+1

𝒴𝑚ℓ
(︂

x− x𝑖
|x− x𝑖|

)︂
, (4.7)

for all x ∈ R3 such that |x−x𝑖| ≥ 𝑟𝑖. The boundedness of this operator can be deduced from the well-posedness
and regularity results on the exterior Dirichlet problem for the Laplace equation.

Step 3. We now recall that we have by assumption that the minimum separation distance of the open
balls {Ω𝑖}𝑁𝑖=1 is uniformly bounded below with respect to 𝑁 . Let ̃︀𝜖 > 0 be a lower bound for this separation
distance and define 𝜖 := ̃︀𝜖

4 . Moreover, let once again 𝑖 ∈ {1, . . . , 𝑁}. We now define the local extension operator
ℰ 𝑖external : 𝐻

1
2 (𝜕Ω𝑖) → 𝐻1 (Ω+) as the mapping with the property that for all 𝜆𝑖 ∈ 𝐻

1
2 (𝜕Ω𝑖) and all x ∈ Ω+ it

holds that (︀
ℰ 𝑖external𝜆𝑖

)︀
(x) :=

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)𝜑𝑟𝑖,𝜖

(︀
|x− x𝑖|

)︀
.

Intuitively, this local extension operator ℰ 𝑖external takes as input Dirichlet data on 𝜕Ω𝑖, constructs the exte-
rior harmonic extension according to equation (4.7), and then multiplies this extension with a smooth cut-off
function. The following properties of this local extension operator can easily be deduced:

Property 1: For all x ∈ Ω+ it holds that
(︀
ℰ 𝑖external𝜆𝑖

)︀
(x) ≤

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x).

Property 2: For all x ∈ Ω+ such that |x − x𝑖| ≥ 𝑟𝑖 + 𝜖, it holds that
(︀
ℰ 𝑖external𝜆𝑖

)︀
(x) = 0. In other words,

the local extension operator ℰ 𝑖external is zero outside a ball of radius 𝑟𝑖 + 𝜖 centred at x𝑖, i.e., the centre of the
open ball Ω𝑖. This implies in particular that the local extension operator ℰ 𝑖external is zero on all closed balls
Ω𝑗 , 𝑗 ∈ {1, . . . , 𝑁} such that 𝑗 ̸= 𝑖.
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Property 3: For all x ∈ Ω+ such that |x−x𝑖| < 𝑟𝑖+𝜖, the gradient ∇x

(︀
ℰ 𝑖external𝜆𝑖

)︀
(x) in cartesian coordinates

satisfies:

|∇x

(︀
ℰ 𝑖external𝜆𝑖

)︀
(x) | =

⃒⃒⃒
𝜑𝑟𝑖,𝜖

(︀
|x− x𝑖|

)︀
∇x

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x) +

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)∇x𝜑𝑟𝑖,𝜖

(︀
|x− x𝑖|

)︀⃒⃒⃒
≤
⃒⃒⃒
∇x

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)
⃒⃒⃒
+
⃒⃒⃒(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)𝜑′𝑟𝑖,𝜖

(︀
|x− x𝑖|

)︀⃒⃒⃒
=
⃒⃒⃒
∇x

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)
⃒⃒⃒
+

3
2𝜖

⃒⃒⃒(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)
⃒⃒⃒
.

Of course, we have not yet shown that the mapping ℰ 𝑖external : 𝐻
1
2 (𝜕Ω𝑖) → 𝐻1 (Ω+) is bounded as claimed. In

order to show this, let us denote by 𝐵𝑟𝑖+𝜖 (x𝑖) the open ball of radius 𝑟𝑖 + 𝜖 with centre at x𝑖. Then combining
properties 1 and 3 yields that

‖ℰ 𝑖external𝜆𝑖‖2𝐻1(Ω+) =
∫︁

Ω+

|ℰ 𝑖external𝜆𝑖 (x) |2

1 + |x|2
dx +

∫︁
Ω+
|∇x

(︀
ℰ 𝑖external𝜆𝑖

)︀
(x) |2 dx

≤
(︂

1 +
9

2𝜖2

)︂∫︁
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

|ℰext
𝑖,ℋ𝜆𝑖 (x) |2 dx + 2

∫︁
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

⃒⃒
∇x

(︀
ℰext
𝑖,ℋ𝜆𝑖

)︀
(x)
⃒⃒2 dx

≤ max
{︂

2, 1 +
9

2𝜖2

}︂
‖ℰext
𝑖,ℋ𝜆𝑖‖2𝐻1

(︀
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

)︀.
In order to simplify the final expression we first use equation (4.7) to simplify the 𝐿2

(︀
Ω+∩𝐵𝑟𝑖+𝜖 (x𝑖)

)︀
norm.

For reasons that will subsequently become clear, we adopt the convention that the space 𝐻
1
2 (𝜕Ω𝑖) is equipped

with the norm ||| · |||
𝐻

1
2 (𝜕Ω𝑖)

defined through Definition 2.19. A direct calculation yields

‖ℰext
𝑖,ℋ𝜆𝑖‖2𝐿2

(︀
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

)︀ ≤ 1
3

(︁
(𝑟𝑖 + 𝜖)3 − 𝑟3𝑖

)︁ ∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

([𝜆𝑖]𝑚ℓ )2

=
(︂
𝜖𝑟2𝑖 + 𝜖2𝑟𝑖 +

𝜖3

3

)︂ ∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

([𝜆𝑖]𝑚ℓ )2

≤ 𝜖max
{︂

1
𝑟𝑖
,

1
𝑟2𝑖

}︂(︂
𝑟2𝑖 + 𝜖𝑟𝑖 +

𝜖2

3

)︂
|||𝜆𝑖|||2

𝐻
1
2 (𝜕Ω𝑖)

.

Next, we use the fact that the local extension ℰext
𝑖,ℋ𝜆𝑖 is a harmonic function so that Green’s identity applies

in the domain Ω+ ∩𝐵𝑟𝑖+𝜖 (x𝑖). Simple calculus then yields that

‖∇ℰext
𝑖,ℋ𝜆𝑖‖2𝐿2

(︀
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

)︀ = 𝑟2𝑖

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

ℓ+ 1
𝑟𝑖

([𝜆𝑖]𝑚ℓ )2 − (𝑟𝑖 + 𝜖)2
∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

ℓ+ 1
𝑟𝑖 + 𝜖

([𝜆𝑖]𝑚ℓ )2
(︂

𝑟𝑖
𝑟𝑖 + 𝜖

)︂2ℓ+2

= 𝑟2𝑖

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

(ℓ+ 1) ([𝜆𝑖]𝑚ℓ )2
(︃

1
𝑟𝑖
− 1
𝑟𝑖 + 𝜖

(︂
𝑟𝑖

𝑟𝑖 + 𝜖

)︂2ℓ
)︃

= 𝑟2𝑖

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

(ℓ+ 1) ([𝜆𝑖]𝑚ℓ )2
(𝑟𝑖 + 𝜖)2ℓ+1 − 𝑟2ℓ+1

𝑖

𝑟𝑖 (𝑟𝑖 + 𝜖)2ℓ+1
·

This last expression can be further simplified by observing that for all ℓ ≥ 0 it holds that

(𝑟𝑖 + 𝜖)2ℓ+1 − 𝑟2ℓ+1
𝑖

𝑟𝑖 (𝑟𝑖 + 𝜖)2ℓ+1
=

(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ+1

− 1

𝑟𝑖

(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ+1
=

𝜖
𝑟𝑖

(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ

+
(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ

− 1

𝑟𝑖

(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ+1
≤ 𝜖

𝑟2𝑖

(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ

(︁
1 + 𝜖

𝑟𝑖

)︁2ℓ+1
≤ 𝜖

𝑟2𝑖
·
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We conclude that

‖∇ℰext
𝑖,ℋ𝜆𝑖‖2𝐿2

(︀
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

)︀ ≤ 𝜖

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

(ℓ+ 1) ([𝜆𝑖]𝑚ℓ )2 ≤ 2𝜖max
{︂

1
𝑟𝑖
,

1
𝑟2𝑖

}︂
|||𝜆𝑖|||2

𝐻
1
2 (𝜕Ω𝑖)

.

Consequently, we can define a constant 𝐶𝑟𝑖,𝜖 > 0 depending only on 𝜖 and 𝑟𝑖 as

𝐶𝑟𝑖,𝜖 := 𝜖max
{︂

1
𝑟𝑖
,

1
𝑟2𝑖

}︂
max

{︂
𝑟2𝑖 + 𝜖𝑟𝑖 +

𝜖2

3
, 2
}︂
, (4.8)

and we obtain that

‖ℰ 𝑖external𝜆𝑖‖2𝐻1(Ω+) ≤ max
{︂

2, 1 +
9

2𝜖2

}︂
‖ℰext
𝑖,ℋ𝜆𝑖‖2𝐻1

(︀
Ω+∩𝐵𝑟𝑖+𝜖(x𝑖)

)︀
≤ max

{︂
2, 1 +

9
2𝜖2

}︂
𝐶𝑟𝑖,𝜖|||𝜆𝑖|||2

𝐻
1
2 (𝜕Ω𝑖)

. (4.9)

It follows that the local extension operator ℰ 𝑖external : 𝐻
1
2 (𝜕Ω𝑖) → 𝐻1 (Ω+) is indeed bounded.

Step 4. We are now ready to define the extension operator ℰexternal : 𝐻
1
2 (𝜕Ω) → 𝐻1 (Ω+). Indeed, given

𝜆 ∈ 𝐻 1
2 (𝜕Ω) and denoting 𝜆𝑖 := 𝜆|𝜕Ω𝑖

for each 𝑖 ∈ {1, . . . , 𝑁}, we define:

ℰexternal (𝜆) :=
𝑁∑︁
𝑖=1

ℰ 𝑖external𝜆𝑖.

Property 2 of the local extension operators ℰ 𝑖external, 𝑖 = 1, . . . , 𝑁 now yields that 𝛾+
(︀
ℰexternal (𝜆)

)︀
= 𝜆.

Moreover, from the bound (4.9) we see that

‖ℰexternal (𝜆) ‖2𝐻1(Ω+) ≤ max
{︂

2, 1 +
9
𝜖2

}︂
max

𝑖=1,...,𝑁
𝐶𝑟𝑖,𝜖

𝑁∑︁
𝑖=1

|||𝜆𝑖|||2
𝐻

1
2 (𝜕Ω𝑖)

= max
{︂

2, 1 +
9
𝜖2

}︂
max

𝑖=1,...,𝑁
𝐶𝑟𝑖,𝜖|||𝜆|||2.

Thus, the mapping ℰexternal : 𝐻
1
2 (𝜕Ω) → 𝐻1 (Ω+) is indeed a bounded extension operator with operator

norm

‖ℰexternal‖2OP := max
{︂

2, 1 +
9
𝜖2

}︂
max

𝑖=1,...,𝑁
𝐶𝑟𝑖,𝜖,

Notice that the operator norm is independent of the number 𝑁 of open balls and depends only the radii
of the open balls {Ω𝑖}𝑁𝑖=1 and the minimal inter-sphere separation distance 𝜖. Furthermore, it follows from
equation (4.8) that max𝑖=1,...,𝑁 𝐶𝑟𝑖,𝜖 = 𝒪 (𝜖) as 𝜖 → 0. Consequently, we obtain that ‖ℰexternal‖2OP = 𝒪

(︀
1
𝜖

)︀
as

𝜖→ 0.
Using the extension operator ℰexternal we have just defined, we can mimic the calculations performed in the

beginning of this proof in order to obtain the second, required bound:

‖𝛾+
𝑁𝑤‖𝐻− 1

2 (𝜕Ω)
≤ 𝑐equiv‖ℰexternal‖OP‖∇𝑤‖𝐿2(Ω+).

Here, the 𝑁 -independent norm equivalence constant 𝑐equiv arises once again due to the fact that the canonical
dual norm ‖ · ‖

𝐻−
1
2 (𝜕Ω)

is defined with respect to the Sobolev–Slobodeckij norm ‖ · ‖
𝐻

1
2 (𝜕Ω)

rather than the new

||| · ||| given by Definition 2.15. Defining 𝑐int := 𝑐equiv‖ℰ int
ℋ ‖OP and 𝑐ext := 𝑐equiv‖ℰexternal‖OP thus completes the

proof. �
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We can now deduce a lower bound for the coercivity constant 𝑐𝒱 of the single layer boundary operator.

Lemma 4.8. Let the constants 𝑐int > 0 and 𝑐ext > 0 be defined as in Lemma 4.7 and let 𝑐𝒱 > 0 denote the
coercivity constant of the single layer boundary operator 𝒱 : 𝐻

1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω). Then it holds that

𝑐𝒱 ≥
1
2

min
{︂

1
𝑐2int

,
1
𝑐2ext

}︂
·

Proof. Let 𝜎 ∈ 𝐻− 1
2 (𝜕Ω) and let 𝑢 = 𝒮𝜎 ∈ 𝐻1 (Ω− ∪ Ω+). It follows from the jump properties of the single

layer potential operator that

⟨𝜎,𝒱𝜎⟩𝜕Ω =
∫︁

Ω−
|∇𝑢 (𝑥) |2 d𝑥+

∫︁
Ω+
|∇𝑢 (𝑥) |2 d𝑥.

Lemma 4.7 therefore yields that

⟨𝜎,𝒱𝜎⟩𝜕Ω ≥
1
𝑐2int

‖𝛾−𝑁𝑢‖
2

𝐻−
1
2 (𝜕Ω)

+
1
𝑐2ext

‖𝛾+
𝑁𝑢‖

2

𝐻−
1
2 (𝜕Ω)

≥ min
{︂

1
𝑐2int

,
1
𝑐2ext

}︂(︂
‖𝛾−𝑁𝑢‖

2

𝐻−
1
2 (𝜕Ω)

+ ‖𝛾+
𝑁𝑢‖

2

𝐻−
1
2 (𝜕Ω)

)︂
≥ min

{︂
1
𝑐2int

,
1
𝑐2ext

}︂(︂
1
2
‖𝛾−𝑁𝑢− 𝛾+

𝑁𝑢‖
2

𝐻−
1
2 (𝜕Ω)

)︂
=

1
2

min
{︂

1
𝑐2int

,
1
𝑐2ext

}︂
‖𝜎‖2

𝐻−
1
2 (𝜕Ω)

.

�

Remark 4.9. Consider the settings of Lemmas 4.7 and 4.8. Two facts can be deduced from the proofs of
these results. First, that the coercivity constant 𝑐𝒱 of the single layer boundary operator depends only on the
radii {𝑟𝑗}𝑁𝑗=1 of the open balls {Ω𝑗}𝑁𝑗=1 and the minimal inter-sphere separation distance. As a consequence,
the continuity constant 𝐶 ̃︀𝒜 of the reduced bilinear form 𝑎̃ (see Lem. 4.5) depends only on the radii of the
open balls, the minimal inter-sphere separation distance, and the dielectric constants {𝜅𝑗}𝑁𝑗=1. Second, we have
also obtained significant insight into the behaviour of the coercivity constant 𝑐𝒱 for small minimal inter-sphere
separation distance. Indeed, let 𝜖 := min𝑖,𝑗∈{1,...,𝑁}

𝑖̸=𝑗

(︀
|x𝑖 − x𝑗 | − 𝑟𝑖 − 𝑟𝑗

)︀
. Then 𝑐𝒱 = 𝒪 (𝜖) for 𝜖→ 0. This result

implies that the continuity constant 𝐶 ̃︀𝒜 grows with rate at most 𝒪
(︁

1√
𝜖

)︁
as 𝜖→ 0.

Now that we have analysed the continuity constant 𝐶 ̃︀𝒜 of the reduced bilinear form 𝑎̃ : 𝐻̆
1
2 (𝜕Ω) ×

𝐻̆− 1
2 (𝜕Ω) → R in detail, the next step in our analysis is to prove that this bilinear form satisfies the inf-

sup condition.

Lemma 4.10. Let the bilinear form 𝑎̃ : 𝐻̆
1
2 (𝜕Ω)× 𝐻̆− 1

2 (𝜕Ω) → R be defined as in Definition 4.4. Then there
exists a constant 𝛽𝒜 > 0 that depends only on the function 𝜅 and the dielectric constant 𝜅0 > 0 of the external
medium such that

(i) It holds that

inf
0̸=𝜆̃∈𝐻̆

1
2 (𝜕Ω)

sup
0̸=𝜎̃∈𝐻̆−

1
2 (𝜕Ω)

⃒⃒⃒
𝑎̃
(︁
𝜆̃, 𝜎̃

)︁⃒⃒⃒
|||𝜆̃||| |||𝜎̃|||*

≥ 𝛽𝒜 > 0; (Bounded Below)
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(ii) For all 0 ̸= 𝜎̃ ∈ 𝐻̆− 1
2 (𝜕Ω) it holds that

sup
0̸=𝜆̃∈𝐻̆

1
2 (𝜕Ω)

⃒⃒⃒
𝑎̃
(︁
𝜆̃, 𝜎̃

)︁⃒⃒⃒
> 0. (Dense Range)

Proof. The proof relies on the fact that the Dirichlet-to-Neumann map DtN: 𝐻̆
1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω) is an
isomorphism. We first prove Property (i). To this end, let ̂︀𝜆 ∈ 𝐻̆

1
2 (𝜕Ω) be arbitrary. We decompose ̂︀𝜆 as the

sum of two functions as follows:

̂︀𝜆 = ̂︀𝜆+ + ̂︀𝜆−.
Here, ̂︀𝜆+ ∈ 𝐻̆

1
2 (𝜕Ω) is a function equal to ̂︀𝜆 on all spheres 𝜕Ω𝑖, 𝑖 ∈ {1, . . . , 𝑁} such that 𝜅𝑖 − 𝜅0 > 0 and

zero otherwise. Similarly, ̂︀𝜆− ∈ 𝐻̆ 1
2 (𝜕Ω) is a function equal to ̂︀𝜆 on all spheres 𝜕Ω𝑖, 𝑖 ∈ {1, . . . , 𝑁} such that

𝜅𝑖 − 𝜅0 < 0 and zero otherwise. We recall that we have assumed that 𝜅 ̸= 𝜅0 as mentioned in Remark 2.5.
We now define a corresponding test function ̂︀𝜎 ∈ 𝐻̆ 1

2 (𝜕Ω) by setting

̂︀𝜎 :=
𝜅− 𝜅0

𝜅0
DtN̂︀𝜆+ −

𝜅− 𝜅0

𝜅0
DtN̂︀𝜆−.

For notational convenience, we define sets of indices 𝑁+ ⊂ N and 𝑁− ⊂ N such that 𝑖 ∈ 𝑁+ ⇐⇒ 𝜅𝑖−𝜅0 > 0
and 𝑖 ∈ 𝑁− ⇐⇒ 𝜅𝑖 − 𝜅0 < 0. Moreover, for all 𝑗 = 1, . . . , 𝑁 we define

̂︀𝜆𝑗 :=

{︃̂︀𝜆 on 𝜕Ω𝑗 ,
0 otherwise,

̂︀𝜎𝑗 :=

{︃̂︀𝜎 on 𝜕Ω𝑗 ,
0 otherwise.

It follows that the reduced bilinear form 𝑎̃ satisfies

𝑎̃
(︁̂︀𝜆, ̂︀𝜎)︁ =

∑︁
𝑗∈𝑁+

𝜅𝑗 − 𝜅0

𝜅0
|||̂︀𝜆𝑗 |||2 +

∑︁
𝑗∈𝑁−

𝜅0 − 𝜅𝑗
𝜅0

|||̂︀𝜆𝑗 |||2 +
⟨̂︀𝜎,𝒱DtN

(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆)︂⟩
𝜕Ω⏟  ⏞  

:=𝐽

.

Note that due to our choice of test function ̂︀𝜎, the coefficients of all terms in the above two sums are positive.
Therefore, let us focus on analysing the term 𝐽 . Using the decomposition we have introduced, we obtain that

𝐽 =
⟨̂︀𝜎,𝒱DtN

(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆)︂⟩
𝜕Ω

=
⟨

DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆+

)︂
,𝒱DtN

(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆+

)︂⟩
𝜕Ω

−
⟨

DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂ ,𝒱DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂⟩
𝜕Ω

.

Using the Calderon identities (see, e.g., [49], Thm. 3.8.7), we further obtain that

−
⟨

DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂ ,𝒱DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂⟩
𝜕Ω

=−
⟨

DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂ ,(︂𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂⟩
𝜕Ω

+
⟨
𝒲
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂ ,(︂𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂⟩
𝜕Ω

.
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The non-negativity of the hypersingular operator 𝒲 : 𝐻
1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) (see Property 2 of Sect. 2.1)
thus implies that

𝐽 ≥ −
⟨

DtN
(︂
𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂ ,(︂𝜅− 𝜅0

𝜅0

̂︀𝜆−)︂⟩
𝜕Ω

= −
∑︁
𝑗∈𝑁−

(︂
𝜅𝑗 − 𝜅0

𝜅0

)︂2

|||̂︀𝜆𝑗 |||2.
Consequently, we obtain that

𝑎̃
(︁̂︀𝜆, ̂︀𝜎)︁ ≥ ∑︁

𝑗∈𝑁+

𝜅𝑗 − 𝜅0

𝜅0
|||̂︀𝜆𝑗 |||2 +

∑︁
𝑗∈𝑁−

𝜅0 − 𝜅𝑗
𝜅0

|||̂︀𝜆𝑗 |||2 − ∑︁
𝑗∈𝑁−

(︂
𝜅0 − 𝜅𝑗
𝜅0

)︂2

|||̂︀𝜆𝑗 |||2
=
∑︁
𝑗∈𝑁+

𝜅𝑗 − 𝜅0

𝜅0
|||̂︀𝜆𝑗 |||2 − ∑︁

𝑗∈𝑁−

𝜅𝑗
𝜅0

𝜅𝑗 − 𝜅0

𝜅0
|||̂︀𝜆𝑗 |||2

≥ min
{︂

min
𝑗∈𝑁+

𝜅𝑗 − 𝜅0

𝜅0
, min
𝑗∈𝑁−

𝜅𝑗
𝜅0

𝜅0 − 𝜅𝑗
𝜅0

}︂
|||̂︀𝜆|||2.

Furthermore, using Remark 2.18 we obtain that the norm of the test function ̂︀𝜎 is given by

|||̂︀𝜎|||* =
⃒⃒⃒⃒⃒⃒⃒⃒⃒𝜅− 𝜅0

𝜅0
DtN̂︀𝜆+ −

𝜅− 𝜅0

𝜅0
DtN̂︀𝜆− ⃒⃒⃒⃒⃒⃒⃒⃒⃒*

=
⃒⃒⃒⃒⃒⃒⃒⃒⃒𝜅− 𝜅0

𝜅0

̂︀𝜆+ −
𝜅− 𝜅0

𝜅0

̂︀𝜆− ⃒⃒⃒⃒⃒⃒⃒⃒⃒
≤ max
𝑗=1,...,𝑁

⃒⃒⃒𝜅𝑗 − 𝜅0

𝜅0

⃒⃒⃒
|||̂︀𝜆|||.

We therefore define the constant 𝛽𝒜 > 0 as

𝛽𝒜 :=
min

{︁
min𝑗∈𝑁+

𝜅𝑗−𝜅0
𝜅0

, min𝑗∈𝑁−
𝜅𝑗

𝜅0

𝜅0−𝜅𝑗

𝜅0

}︁
max𝑗=1,...,𝑁

⃒⃒⃒
𝜅𝑗−𝜅0
𝜅0

⃒⃒⃒ · (4.10)

We then obtain that

inf
0̸=𝜆̃∈𝐻̆

1
2 (𝜕Ω)

sup
0̸=𝜎̃∈𝐻̆−

1
2 (𝜕Ω)

⃒⃒⃒
𝑎̃
(︁
𝜆̃, 𝜎̃

)︁⃒⃒⃒
|||𝜆̃||| |||𝜎̃|||*

≥ 𝛽𝒜,

which completes the proof of Property (i).
Let us now turn to the proof of Property (ii). Let 0 ̸= ̂︀𝜎 ∈ 𝐻̆− 1

2 (𝜕Ω) be arbitrary and let NtD: 𝐻̆− 1
2 (𝜕Ω) →

𝐻̆
1
2 (𝜕Ω) be the inverse of the Dirichlet-to-Neumann map. Using the decomposition and notation developed

above, it is possible to define a corresponding function ̂︀𝜆 ∈ 𝐻̆ 1
2 (𝜕Ω) as

̂︀𝜆 :=
∑︁
𝑗∈𝑁+

𝜅0

𝜅𝑗 − 𝜅0
NtD̂︀𝜎𝑗 − ∑︁

𝑗∈𝑁−

𝜅0

𝜅𝑗 − 𝜅0
NtD̂︀𝜎𝑗 .

With this choice of ̂︀𝜆, we immediately obtain that

̂︀𝜎 =
∑︁
𝑗∈𝑁+

𝜅𝑗 − 𝜅0

𝜅0
DtN̂︀𝜆𝑗 − ∑︁

𝑗∈𝑁−

𝜅𝑗 − 𝜅0

𝜅0
DtN̂︀𝜆𝑗 .
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Therefore, a similar calculation to the one used to prove Property (i) reveals that⃒⃒⃒
𝑎̃
(︁̂︀𝜆, ̂︀𝜎)︁⃒⃒⃒ ≥ min

{︂
min
𝑗∈𝑁+

𝜅𝑗 − 𝜅0

𝜅0
, min
𝑗∈𝑁−

𝜅𝑗
𝜅0

𝜅0 − 𝜅𝑗
𝜅0

}︂
|||̂︀𝜆|||2

≥
𝛽𝒜

max𝑗=1,...,𝑁

⃒⃒⃒
𝜅𝑗−𝜅0
𝜅0

⃒⃒⃒ (︀|||̂︀𝜎|||*)︀2.
We conclude that for all 0 ̸= 𝜎̃ ∈ 𝐻̆− 1

2 (𝜕Ω) it holds that

sup
0̸=𝜆̃∈𝐻̆

1
2 (𝜕Ω)

|𝑎̃
(︁
𝜆̃, 𝜎̃

)︁
| > 0.

This completes the proof. �

An immediate consequence of Lemma 4.10 is that both the modified weak formulation (4.4) and (4.5) and
the weak formulation (4.2) are well-posed.

4.1.3. The new analysis of the discrete problem

Our next goal is to prove that the Galerkin discretisation (4.3) is also well-posed with a stability constant
that is independent of the number of open balls 𝑁 . Similar to the infinite-dimensional case, we adopt an indirect
approach, and reformulate equation (4.3) as a modified Galerkin discretisation using the projection operators
P0 and P⊥0 introduced through Lemma 2.13. We first define the relevant approximation space.

Definition 4.11 (Reduced global approximation space). Let ℓmax ∈ N. We define the finite-dimensional Hilbert
space 𝑊 ℓmax

0 ⊂ 𝐻̆
1
2 (𝜕Ω) as the set

𝑊 ℓmax
0 :=

{︁
𝑢 ∈𝑊 ℓmax (𝜕Ω) : P0𝑢 = 0

}︁
,

equipped with the (·, ·)𝑊 ℓmax inner product.

Remark 4.12. Using the fact that the spherical harmonics functions are smooth, we can immediately infer
that the finite-dimensional Hilbert spaces 𝑊 ℓmax

0 ⊂𝑊 ℓmax ⊂ 𝐻̆
1
2 (𝜕Ω) also satisfy

𝑊 ℓmax
0 ⊂𝑊 ℓmax ⊂ 𝐻̆− 1

2 (𝜕Ω) and ∀𝜆ℓmax ∈𝑊
ℓmax
0 : ‖𝜆ℓmax‖2𝑊 ℓmax = |||𝜆ℓmax |||2.

Note that if one wishes to view 𝑊 ℓmax and 𝑊 ℓmax
0 as subspaces of 𝐻− 1

2 (𝜕Ω), then the definition of the
equipped norms would have to be modified accordingly.

Modified Galerkin discretisation of the integral equation (4.1)

Let 𝜎𝑓 ∈ 𝐻− 1
2 (𝜕Ω). Find functions (𝜆0, 𝜆ℓmax) ∈ 𝒞 (𝜕Ω)×𝑊 ℓmax

0 such that for all test functions (𝜎0, 𝜎ℓmax) ∈
𝒞 (𝜕Ω)×𝑊 ℓmax

0 it holds that

(𝜎0, 𝜆0)𝐿2(𝜕Ω) −
(︂
𝜎0,𝒱DtN

(︁𝜅0 − 𝜅

𝜅0
𝜆ℓmax

)︁)︂
𝐿2(𝜕Ω)

=
4𝜋
𝜅0

(𝜎0,𝒱𝜎𝑓 )𝐿2(𝜕Ω) , (4.11)

(𝜎ℓmax , 𝜆ℓmax)𝐿2(𝜕Ω) −
(︂
𝜎ℓmax ,𝒱DtN

(︁𝜅0 − 𝜅

𝜅0
𝜆ℓmax

)︁)︂
𝐿2(𝜕Ω)

=
4𝜋
𝜅0

(𝜎ℓmax ,𝒱𝜎𝑓 )𝐿2(𝜕Ω) . (4.12)

It is a simple exercise to prove that the modified Galerkin discretisation (4.11) and (4.12) is indeed equivalent
to the Galerkin discretisation (4.3).
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The structure of the Galerkin discretisation (4.11) and (4.12) is very similar to the structure of the infinite-
dimensional modified weak formulation (4.4) and (4.5). Indeed, we observe once again that equation (4.12)
involves only the unknown function 𝜆ℓmax ∈ 𝑊 ℓmax

0 . It is therefore clear that if equation (4.12) is uniquely
solvable, then equation (4.11) is also uniquely solvable, and hence the Galerkin discretisation (4.3) is well-
posed. Moreover, thanks to the analysis carried out for the infinite-dimensional equation (4.5), well-posedness
of the finite-dimensional equation (4.12) follows almost immediately. Indeed, we have the following result.

Lemma 4.13. Let the bilinear form 𝑎̃ : 𝐻̆
1
2 (𝜕Ω)× 𝐻̆− 1

2 (𝜕Ω) → R be defined as in Definition 4.4, and let the
constant 𝛽𝒜 > 0 be defined through equation (4.10) as in the proof of Lemma 4.10. Then it holds that

inf
0̸=𝜆ℓmax∈𝑊

ℓmax
0

sup
0̸=𝜎ℓmax∈𝑊

ℓmax
0

|𝑎̃ (𝜆ℓmax , 𝜎ℓmax) |
|||𝜆ℓmax ||| |||𝜎ℓmax |||*

≥ 𝛽𝒜 > 0. (Discrete inf-sup Condition)

Proof. The proof uses the fact that the Dirichlet-to-Neumann operator DtN: 𝑊 ℓmax
0 →𝑊 ℓmax

0 is an isomorphism.
Indeed, consider 𝜆𝑗 ∈𝑊 ℓmax

0 (𝜕Ω𝑗) given by

𝜆𝑗 (x) =
ℓmax∑︁
ℓ=1

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝜆𝑗 ]
𝑚
ℓ 𝒴

𝑚
ℓ

(︂
x− x𝑗
|x− x𝑗 |

)︂
·

Then the function DtN𝜆𝑗 ∈𝑊 ℓmax
0 is given by

DtN𝜆𝑗 (x) =
ℓmax∑︁
ℓ=1

𝑚=+ℓ∑︁
𝑚=−ℓ

ℓ

𝑟𝑗
[𝜆𝑗 ]𝑚ℓ 𝒴𝑚ℓ

(︂
x− x𝑗
|x− x𝑗 |

)︂
·

Consequently given any arbitrary function ̂︀𝜆 ∈ 𝑊 ℓmax
0 ⊂ 𝐻̆

1
2 (𝜕Ω), we may pick as the test function ̂︀𝜎 ∈

𝑊 ℓmax
0 ⊂ 𝐻̆− 1

2 (𝜕Ω) given by

̂︀𝜎 =
𝜅− 𝜅0

𝜅0
DtN̂︀𝜆+ −

𝜅− 𝜅0

𝜅0
DtN̂︀𝜆−,

where we have used the decomposition ̂︀𝜆 = ̂︀𝜆+ + ̂︀𝜆− introduced in the proof of Lemma 4.10. The remainder
of the proof is now identical to the proof of Lemma 4.10 and yields the discrete inf-sup constant 𝛽𝒜 defined
through equation (4.10). �

Lemma 4.13 now has several important consequences:

– Both the modified Galerkin discretisation (4.11) and (4.12) and the Galerkin discretisation (4.3) are well-
posed.

– For every choice of the approximation parameter ℓmax ∈ N, the finite-dimensional solution to the Galerkin
discretisation (4.3) satisfies a standard quasi-optimality result.

– Since the discrete inf-sup constant 𝛽𝒜 is independent of the approximation space, we obtain stability and
convergence to the exact solution of the approximate solutions as the approximation parameter ℓmax →∞.

All of the above results can be proven using text-book functional analysis techniques. We state one particular
quasi-optimality result concerning solutions to the finite-dimensional equation (4.12) which will be of use in the
next subsection.

Lemma 4.14 (Partial quasi-optimality). Let 𝐶𝒜 > 0 be the continuity constant defined through equation (4.6)
in Lemma 4.5, let 𝛽𝒜 > 0 be the inf-sup constant defined through equation (4.10) in Lemma 4.10, let 𝜎𝑓 ∈
𝐻− 1

2 (𝜕Ω), let ℓmax ∈ N, let 𝜆ℓmax ∈𝑊
ℓmax
0 be the unique solution to the finite-dimensional equation (4.12) with
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right hand side given by 𝜎𝑓 , and let 𝜆̃ ∈ 𝐻̆ 1
2 (𝜕Ω) be the unique solution to infinite-dimensional equation (4.5)

with right hand side given by 𝜎𝑓 . Then it holds that

|||𝜆̃− 𝜆ℓmax ||| ≤
(︂

1 +
𝐶𝒜
𝛽𝒜

)︂
inf

𝜓∈𝑊 ℓmax
0

|||𝜆̃− 𝜓|||. (4.13)

Proof. The proof is also text-book functional analysis. �

Notice that thus far we have only proved well-posedness of the infinite-dimensional weak formulation (4.2)
and the Galerkin discretisation (4.3) involving the surface electrostatic potential. However, the main results in
Section 2 have been formulated for the induced surface charge. Therefore, the next step in our analysis will be to
transfer our existing results to the infinite-dimensional weak formulation (2.4) and the Galerkin discretisation
(2.7) involving the exact and approximate induced surface charge.

4.2. Well-posedness analysis for the induced surface charge

As the astute reader may already have realised, the well-posedness analysis for the infinite-dimensional weak
formulation (2.4) and the Galerkin discretisation (2.7) is exceedingly simple because the underlying boundary
integral operator is simply 𝒜*, i.e., the adjoint of the boundary integral operator 𝒜, which has already been
completely analysed in both the infinite-dimensional and finite dimensional setting. To facilitate the subsequent
exposition, we introduce some additional notation.

Definition 4.15 (Finite-dimensional projection operators). Let ℓmax ∈ N. We define the projection operator
Pℓmax : 𝐻

1
2 (𝜕Ω) → 𝑊 ℓmax as the mapping with the property that for any 𝜓 ∈ 𝐻

1
2 (𝜕Ω), Pℓmax𝜓 is the unique

element of 𝑊 ℓmax satisfying

(𝜑ℓmax ,Pℓmax𝜓)𝐿2(𝜕Ω) = ⟨𝜑ℓmax , 𝜓⟩𝜕Ω ∀𝜑ℓmax ∈𝑊 ℓmax ,

Moreover, we define the projection operator Qℓmax : 𝐻− 1
2 (𝜕Ω) → 𝑊 ℓmax as the mapping with the property

that for any 𝜎 ∈ 𝐻− 1
2 (𝜕Ω), Qℓmax𝜎 is the unique element of 𝑊 ℓmax satisfying

(Qℓmax𝜎, 𝜑ℓmax)𝐿2(𝜕Ω) = ⟨𝜎, 𝜑ℓmax⟩𝜕Ω ∀𝜑ℓmax ∈𝑊 ℓmax .

Remark 4.16. Consider the setting of Definition 4.15. It is possible to show that the projection operators
Pℓmax and Qℓmax are stable, i.e., for all 𝜓 ∈ 𝐻 1

2 (𝜕Ω) and all 𝜎 ∈ 𝐻− 1
2 (𝜕Ω) it holds that

|||Pℓmax𝜓||| ≤ |||𝜓||| and |||Qℓmax𝜎|||* ≤ |||𝜎|||*.

We now have the following simple result.

Theorem 4.17 (Infinite-dimensional well-posedness). The infinite-dimensional weak formulation (2.4) of the
boundary integral equation (2.2) is well-posed.

Proof. The well-posedness of the infinite-dimensional weak formulation (4.2) implies that the boundary integral
operator 𝒜 : 𝐻

1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) defined through Definition 2.9 is a continuous bijection. Consequently the

adjoint operator 𝒜* : 𝐻− 1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) is also a continuous bijection. �

A similar result holds for the Galerkin discretisation of the integral equation (2.2) for the induced sur-
face charge.

Theorem 4.18 (Finite-dimensional well-posedness). The finite-dimensional Galerkin discretisation (2.7) of the
weak formulation (2.4) is well-posed.
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Proof. Let Pℓmax : 𝐻
1
2 (𝜕Ω) → 𝑊 ℓmax and Qℓmax : 𝐻− 1

2 (𝜕Ω) → 𝑊 ℓmax denote the projection operators defined
through Definition 4.15. The well-posedness of the finite-dimensional Galerkin discretisation (4.3) implies that
the boundary integral operator Pℓmax𝒜Pℓmax : 𝑊 ℓmax → 𝑊 ℓmax is a continuous bijection. Consequently, the
adjoint operator Qℓmax𝒜*Qℓmax : 𝑊 ℓmax →𝑊 ℓmax is also a continuous bijection. �

We conclude this subsection by stating a first approximation result for the solution 𝜈ℓmax ∈ 𝑊 ℓmax to the
Galerkin discretisation (2.7).

Theorem 4.19 (First approximability result). Let ℓmax ∈ N, let Qℓmax : 𝐻− 1
2 (𝜕Ω) →𝑊 ℓmax denote the projec-

tion operator defined through Definition 4.15, let Q⊥ℓmax
:= 𝐼 −Qℓmax where 𝐼 is the identity map on 𝐻− 1

2 (𝜕Ω),
let 𝐶𝒜 > 0 be the continuity constant defined through equation (4.6) in Lemma 4.5, let 𝛽𝒜 > 0 be the inf-sup
constant defined through equation (4.10) in Lemma 4.10, let 𝜎𝑓 ∈ 𝐻− 1

2 (𝜕Ω), let 𝜈 ∈ 𝐻− 1
2 (𝜕Ω) be the unique

solution to infinite-dimensional weak formulation (2.4) with right hand side given by 𝜎𝑓 and let 𝜈ℓmax ∈ 𝑊 ℓmax

be the unique solution to the finite-dimensional Galerkin discretisation (2.7) with right hand side given by 𝜎𝑓 .
Then it holds that

|||𝜈 − 𝜈ℓmax |||* ≤
max

⃒⃒⃒
𝜅0−𝜅
𝜅0

⃒⃒⃒
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ (︁1 +
𝐶𝒜
𝛽𝒜

)︁(︂⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒*

+
8𝜋
𝜅0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓

⃒⃒⃒⃒⃒⃒⃒⃒⃒*)︂
. (4.14)

Proof. Let 𝜆̃ ∈ 𝐻̆ 1
2 (𝜕Ω) be the solution of equation (4.5) in the modified weak formulation. It is straightforward

to show that

𝜈 =
𝜅0 − 𝜅

𝜅0
DtN𝜆̃+

4𝜋
𝜅0
𝜎𝑓 . (4.15)

Next, let 𝒜 be the integral operator defined through Definition 2.9, let ̂︀𝜆ℓmax ∈𝑊 ℓmax be the solution to the
Galerkin discretisation (4.3), and let Pℓmax : 𝐻

1
2 (𝜕Ω) →𝑊 ℓmax denote the projection operator defined through

Definition 4.15. We then define the mappings

𝒱ℓmax := Pℓmax𝒱Qℓmax , 𝒜ℓmax := Pℓmax𝒜Pℓmax , and 𝒜*ℓmax
:= Qℓmax𝒜*Qℓmax ,

and we define the function 𝜓ℓmax := 𝒱ℓmax𝜈ℓmax ∈𝑊 ℓmax . We first claim that 𝜓ℓmax satisfies the equation

𝒜ℓmax𝜓ℓmax =
4𝜋
𝜅0
𝒱ℓmax𝜎𝑓 . (4.16)

Indeed, since 𝜈ℓmax satisfies the Galerkin discretisation (2.7) we obviously have

𝒜*ℓmax
𝜈ℓmax =

4𝜋
𝜅0

Qℓmax𝜎𝑓 which implies that 𝒱ℓmax𝒜*ℓmax
𝜈ℓmax =

4𝜋
𝜅0
𝒱ℓmax𝜎𝑓 .

Using the fact that 𝒱ℓmax𝒜*ℓmax
= 𝒜ℓmax𝒱ℓmax yields

𝒜ℓmax𝜓ℓmax = 𝒜ℓmax𝒱ℓmax𝜈ℓmax = 𝒱ℓmax𝒜*ℓmax
𝜈ℓmax =

4𝜋
𝜅0
𝒱ℓmax𝜎𝑓 ,

which gives the intermediary result.
We now consider again the Galerkin discretisation (2.7). Using the definition of 𝜓ℓmax and the fact that

QℓmaxDtN = DtNPℓmax we obtain that

𝜈ℓmax =
𝜅0 − 𝜅

𝜅0
QℓmaxDtN𝒱𝜈ℓmax +

4𝜋
𝜅0

Qℓmax𝜎𝑓 =
𝜅0 − 𝜅

𝜅0
DtN𝜓ℓmax +

4𝜋
𝜅0

Qℓmax𝜎𝑓 . (4.17)
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Let P⊥0 : 𝐻
1
2 (𝜕Ω) → 𝐻̆

1
2 (𝜕Ω) be the projection operator defined through Lemma 2.13. Subtracting equa-

tion (4.17) from equation (4.15) then gives

|||𝜈 − 𝜈ℓmax |||* =
⃒⃒⃒⃒⃒⃒⃒⃒⃒𝜅0 − 𝜅

𝜅0
DtN𝜆̃− 𝜅0 − 𝜅

𝜅0
DtN𝜓ℓmax +

4𝜋
𝜅0

(𝜎𝑓 −Qℓmax𝜎𝑓 )
⃒⃒⃒⃒⃒⃒⃒⃒⃒*

≤
⃒⃒⃒⃒⃒⃒⃒⃒⃒𝜅0 − 𝜅

𝜅0
DtN𝜆̃− 𝜅0 − 𝜅

𝜅0
DtN𝜓ℓmax

⃒⃒⃒⃒⃒⃒⃒⃒⃒*
+

4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒*

=
⃒⃒⃒⃒⃒⃒⃒⃒⃒𝜅0 − 𝜅

𝜅0

(︁
𝜆̃− P⊥0 𝜓ℓmax

)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒
+

4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒*

≤ max
⃒⃒⃒𝜅0 − 𝜅

𝜅0

⃒⃒⃒
|||𝜆̃− P⊥0 𝜓ℓmax |||+

4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒*

. (4.18)

Let 𝜆ℓmax ∈ 𝑊 ℓmax
0 denote the solution to equation (4.12) of the modified Galerkin discretisation. The first

term in the bound (4.18) can then be written as

|||𝜆̃− P⊥0 𝜓ℓmax ||| ≤ |||𝜆ℓmax − P⊥0 𝜓ℓmax |||+ |||𝜆̃− 𝜆ℓmax |||. (4.19)

The first term in Inequality (4.19) can be simplified as follows: We first define the mapping ̃︀𝒜ℓmax : 𝑊 ℓmax
0 →

𝑊 ℓmax
0 as ̃︀𝒜ℓmax := P⊥0 𝒜ℓmaxP⊥0 . Thus, ̃︀𝒜ℓmax is the operator associated with the Galerkin discretisation of the

“reduced” bilinear form defined through Definition 4.4. We therefore obtain from Lemma 4.13 that

|||𝜆ℓmax − P⊥0 𝜓ℓmax ||| =
⃒⃒⃒⃒⃒⃒ ̃︀𝒜−1

ℓmax
̃︀𝒜ℓmax

(︀
𝜆ℓmax − P⊥0 𝜓ℓmax

)︀⃒⃒⃒⃒⃒⃒
≤ 1
𝛽𝒜

⃒⃒⃒⃒⃒⃒ ̃︀𝒜ℓmax

(︀
𝜆ℓmax − P⊥0 𝜓ℓmax

)︀⃒⃒⃒⃒⃒⃒
.

In order to simplify this last bound, we first use equation (4.16), the definitions of the operators ̃︀𝒜ℓmax and
𝒜ℓmax together with a simple calculation to deduce that

̃︀𝒜ℓmaxP⊥0 𝜓ℓmax = P⊥0 𝒜ℓmaxP⊥0 𝜓ℓmax =
4𝜋
𝜅0

P⊥0 𝒱ℓmax𝜎𝑓 =
4𝜋
𝜅0

P⊥0 Pℓmax𝒱Qℓmax𝜎𝑓 .

A similar calculation using the definition of 𝜆ℓmax (see Eq. (4.12)) yields

̃︀𝒜ℓmax𝜆ℓmax =
4𝜋
𝜅0

P⊥0 Pℓmax𝒱𝜎𝑓 .

We can therefore deduce that

|||𝜆ℓmax − P⊥0 𝜓ℓmax ||| ≤
1
𝛽𝒜

⃒⃒⃒⃒⃒⃒ ̃︀𝒜(︀𝜆ℓmax − P⊥0 𝜓ℓmax

)︀⃒⃒⃒⃒⃒⃒
≤ 4𝜋
𝜅0𝛽𝒜

⃒⃒⃒⃒⃒⃒⃒⃒⃒
P⊥0 Pℓmax𝒱Q⊥ℓmax

𝜎𝑓
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

.

Since DtN: 𝐻̆
1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω) is an isomorphism and thus invertible, we can define Φℓmax :=
DtN−1Q⊥ℓmax

𝜎𝑓 . We then obtain

4𝜋
𝜅0𝛽𝒜

⃒⃒⃒⃒⃒⃒⃒⃒⃒
P⊥0 Pℓmax𝒱Q⊥ℓmax

𝜎𝑓
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

=
4𝜋
𝜅0𝛽𝒜

⃒⃒⃒⃒⃒⃒⃒⃒⃒
PℓmaxP⊥0 𝒱Q⊥ℓmax

𝜎𝑓
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

≤ 4𝜋
𝜅0𝛽𝒜

⃒⃒⃒⃒⃒⃒⃒⃒⃒
P⊥0 𝒱DtNΦℓmax

⃒⃒⃒⃒⃒⃒⃒⃒⃒
≤ 4𝜋
𝜅0𝛽𝒜

𝑐
3
2
𝒦𝑐equiv√
𝑐𝒱

|||Φℓmax ||| =
4𝜋
𝜅0𝛽𝒜

𝑐
3
2
𝒦𝑐equiv√
𝑐𝒱

|||Q⊥ℓmax
𝜎𝑓 |||*,

where the first step in the second line follows from the arguments used in the proof of Lemma 4.1.
In order to simplify the second term in the Inequality (4.19) we use the quasi-optimality result Lemma 4.14:

|||𝜆̃− 𝜆ℓmax ||| ≤
(︂

1 +
𝐶𝒜
𝛽𝒜

)︂
inf

𝜓∈𝑊 ℓmax
0

|||𝜆̃− 𝜓|||.



S96 M. HASSAN AND B. STAMM

Using again the fact that DtN: 𝐻̆
1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω) is invertible, we deduce from equation (4.15) that

𝜆̃ =
𝜅0

𝜅0 − 𝜅
DtN−1Q⊥0 𝜈 −

𝜅0

𝜅0 − 𝜅

4𝜋
𝜅0

DtN−1Q⊥0 𝜎𝑓 .

Since the Dirichlet-to-Neumann mapping is bijective on 𝑊 ℓmax
0 , we can therefore write

inf
𝜓∈𝑊 ℓmax

0

|||𝜆̃− 𝜓||| = inf
DtN−1𝜎0∈𝑊 ℓmax

0

⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜅0

𝜅0 − 𝜅
DtN−1Q⊥0

(︁
𝜈 − 4𝜋

𝜅0
𝜎𝑓

)︁
−DtN−1𝜎0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
= inf
𝜎0∈𝑊 ℓmax

0

⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜅0

𝜅0 − 𝜅
DtN−1

(︁
Q⊥0
(︁
𝜈 − 4𝜋

𝜅0
𝜎𝑓

)︁
− 𝜎0

)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒
≤ 1

min
⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ inf
𝜎0∈𝑊 ℓmax

0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥0
(︁
𝜈 − 4𝜋

𝜅0
𝜎𝑓

)︁
− 𝜎0

⃒⃒⃒⃒⃒⃒⃒⃒⃒*
.

In the above infimum, we may pick 𝜎0 = Q⊥0 Qℓmax

(︁
𝜈 − 4𝜋

𝜅0
𝜎𝑓

)︁
and use the triangle inequality to obtain

inf
𝜓∈𝑊 ℓmax

0

|||𝜆̃− 𝜓||| ≤ 1

min
⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ ⃒⃒⃒⃒⃒⃒⃒⃒⃒Q⊥ℓmax
𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒*

+
1

min
⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ 4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓

⃒⃒⃒⃒⃒⃒⃒⃒⃒*
.

Using the above calculations, we can finally bound the original Inequality (4.18) as

|||𝜈 − 𝜈ℓmax |||* ≤
max

⃒⃒⃒
𝜅0−𝜅
𝜅0

⃒⃒⃒
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ (︂1 +
𝐶𝒜
𝛽𝒜

)︂(︂⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒*

+
4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓

⃒⃒⃒⃒⃒⃒⃒⃒⃒*)︂

+
4𝜋
𝜅0

1
𝛽𝒜

max
⃒⃒⃒𝜅0 − 𝜅

𝜅0

⃒⃒⃒𝑐 3
2
𝒦𝑐equiv√
𝑐𝒱

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒* +

4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒*

.

Using the fact that max
⃒⃒⃒
𝜅0−𝜅
𝜅0

⃒⃒⃒
𝑐

3
2
𝒦𝑐equiv√
𝑐𝒱

≤ 𝐶 ̃︀𝒜, we therefore obtain

|||𝜈 − 𝜈ℓmax |||* ≤
max

⃒⃒⃒
𝜅0−𝜅
𝜅0

⃒⃒⃒
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ (︂1 +
𝐶𝒜
𝛽𝒜

)︂(︂⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒*

+
4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓

⃒⃒⃒⃒⃒⃒⃒⃒⃒*)︂
+
(︂

1 +
𝐶 ̃︀𝒜
𝛽𝒜

)︂
4𝜋
𝜅0

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒*

≤
max

⃒⃒⃒
𝜅0−𝜅
𝜅0

⃒⃒⃒
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ (︂1 +
𝐶𝒜
𝛽𝒜

)︂(︂⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒*

+
8𝜋
𝜅0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓

⃒⃒⃒⃒⃒⃒⃒⃒⃒*)︂
,

as claimed. �

4.3. Proofs of the main results

We begin with the proof of Theorem 2.23, which involves a priori error estimates and convergence rates.

Proof of Theorem 2.23. Consider the setting of Theorem 2.23. We first observe that for all 𝑠 ≥ 0, 𝜎𝑓 ∈ 𝐻𝑠 (𝜕Ω)
implies that 𝜈 ∈ 𝐻𝑠 (𝜕Ω) (see, e.g., [3], Sect. 9.1.4).

Next, let 𝑗 ∈ {1, . . . , 𝑁} and let 𝜈𝑗 , 𝜎𝑓,𝑗 ∈ 𝐻𝑠 (𝜕Ω𝑗) be defined as 𝜈𝑗 := 𝜈|𝜕Ω𝑗
and 𝜎𝑓,𝑗 := 𝜎𝑓 |𝜕Ω𝑗

. It follows
that there exist coefficients [𝜈𝑗 ]𝑚ℓ , [𝜎𝑓,𝑗 ]

𝑚
ℓ , ℓ ∈ N0, −ℓ ≤ 𝑚 ≤ +ℓ such that for all x ∈ 𝜕Ω𝑗 it holds that

𝜈𝑗 (x) =
∞∑︁
ℓ=0

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝜈𝑗 ]𝑚ℓ 𝒴𝑚ℓ
(︂

x− x𝑗
|x− x𝑗 |

)︂
, and 𝜎𝑓,𝑗 (x) =

∞∑︁
ℓ=0

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝜎𝑓,𝑗 ]𝑚ℓ 𝒴𝑚ℓ
(︂

x− x𝑗
|x− x𝑗 |

)︂
·
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Using Definition 2.15 of the ||| · |||* norm and Definition 4.15 of the projection operator Q⊥ℓmax
we obtain that

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒*2

≤
𝑁∑︁
𝑗=1

𝑟2𝑗

∞∑︁
ℓ=ℓmax+1

𝑚=+ℓ∑︁
𝑚=−ℓ

(︂
ℓ

𝑟𝑗

)︂−1

([𝜈𝑗 ]𝑚ℓ )2 ,

and

⃒⃒⃒⃒⃒⃒
Q⊥ℓmax

𝜎𝑓
⃒⃒⃒⃒⃒⃒*2 ≤ 𝑁∑︁

𝑗=1

𝑟2𝑗

∞∑︁
ℓ=ℓmax+1

𝑚=+ℓ∑︁
𝑚=−ℓ

(︂
ℓ

𝑟𝑗

)︂−1

([𝜎𝑓,𝑗 ]𝑚ℓ )2 .

Using Theorem 4.19, the definition of the ||| · |||𝐻𝑠(𝜕Ω) from equation (2.10) and standard arguments from
the error analysis of spectral methods then yields that

|||𝜈 − 𝜈ℓmax |||* ≤
max

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ (︂1 +
𝐶𝒜
𝛽𝒜

)︂(︂
max 𝑟𝑗
ℓmax + 1

)︂𝑠+ 1
2
(︂⃒⃒⃒⃒⃒⃒⃒⃒⃒

Q⊥0 𝜈
⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐻𝑠(𝜕Ω)

+
8𝜋
𝜅0

⃒⃒⃒⃒⃒⃒⃒⃒⃒
Q⊥0 𝜎𝑓

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐻𝑠(𝜕Ω)

)︂
.

The convergence rates for the total electrostatic energy follow by observing that the Cauchy–Schwarz inequal-
ity yields

|ℰ𝜎𝑓
(𝜈)− ℰ𝜎𝑓

(𝜈ℓmax) | = ⟨𝜈 − 𝜈ℓmax ,𝒱𝜎𝑓 ⟩𝜕Ω ≤ |||𝜈 − 𝜈ℓmax |||*|||𝒱𝜎𝑓 |||.

�

Proof of Theorem 2.24. Consider the setting of Theorem 2.24. We first observe that since 𝜎𝑓 ∈ 𝐶∞ (𝜕Ω), the
regularity theory for boundary integral equations (see, e.g., [3], Sect. 9.1.4) implies that 𝜈 ∈ 𝐶∞ (𝜕Ω). Next, let
us focus on obtaining an expression for the norm of the induced surface charge 𝜈. To this end, let 𝑗 ∈ {1, . . . , 𝑁}
and let 𝜈𝑗 ∈ 𝐶∞ (𝜕Ω𝑗) be defined as 𝜈𝑗 := 𝜈|𝜕Ω𝑗 . It follows that there exist coefficients [𝜈𝑗 ]𝑚ℓ , ℓ ∈ N0,−ℓ ≤ 𝑚 ≤ ℓ
such that for all 𝑥 ∈ 𝜕Ω𝑗 it holds that

𝜈𝑗 (x) =
∞∑︁
ℓ=0

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝜈𝑗 ]𝑚ℓ 𝒴𝑚ℓ
(︂

x− x𝑗
|x− x𝑗 |

)︂
·

Let ℰℋ𝜈𝑗 ∈ 𝐶∞
(︀
Ω𝑗
)︀

be the harmonic extension of 𝜈𝑗 inside the ball Ω𝑗 . Then for all 𝑥 ∈ Ω𝑗 it holds that

(ℰℋ𝜈𝑗) (x) =
∞∑︁
ℓ=0

𝑚=+ℓ∑︁
𝑚=−ℓ

[𝜈𝑗 ]𝑚ℓ

(︂
|x− x𝑗 |
𝑟𝑗

)︂ℓ
𝒴𝑚ℓ

(︂
x− x𝑗
|x− x𝑗 |

)︂
· (4.20)

Using equation (4.20), it is straightforward to verify that for all integers 𝑘 ∈ N0 it holds that

|||Q⊥0 𝜈𝑗 |||2𝐻𝑘(𝜕Ω𝑗)
=
∫︁
𝜕Ω𝑗

(ℰℋ𝜈𝑗) (x)
𝜕2𝑘 (ℰℋ𝜈𝑗) (x)

𝜕𝜂2𝑘
dx, (4.21)

where Q⊥0 : 𝐻− 1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω) is the projection operator defined through Lemma 2.13 and 𝜂 : 𝜕Ω𝑗 → R3

is the unit outward-pointing normal vector. On the other hand, we have by assumption that ℰℋ𝜈𝑗 is analytic
on Ω𝑗 . Therefore, there exists some constant 𝐶𝜈𝑗

> 1 that depends on the function 𝜈𝑗 such that for all 𝑘 ∈ N0

and x ∈ 𝜕Ω𝑗 it holds that ⃒⃒⃒⃒
⃒𝜕𝑘
(︀
ℰℋ𝜈𝑗

)︀
(x)

𝜕𝜂𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶𝑘+1

𝜈𝑗
𝑘!.
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Defining the constant 𝐶𝜈 := max𝑗 𝐶𝜈𝑗
, we therefore obtain from equation (4.21) that

|||Q⊥0 𝜈𝑗 |||2𝐻𝑘(𝜕Ω𝑗)
≤ 4𝜋𝑟2𝑗𝐶

2𝑘+2
𝜈𝑗

(2𝑘)!, so that
1
𝑁
|||Q⊥0 𝜈|||2𝐻𝑘(𝜕Ω) ≤ 4𝜋max

𝑗
𝑟2𝑗𝐶

2𝑘+2
𝜈 (2𝑘)!,

A similar calculation which uses the fact that the harmonic extension of 𝜎𝑓 is analytic on Ω− yields that
there exist some constant 𝐶𝜎𝑓

depending on 𝜎𝑓 such that

1
𝑁
|||Q⊥0 𝜎𝑓 |||2𝐻𝑘(𝜕Ω) ≤ 4𝜋max

𝑗
𝑟2𝑗𝐶

2𝑘+2
𝜎𝑓

(2𝑘)!.

The remainder of the proof is standard. Indeed, we define 𝐶𝜈,𝜎𝑓
:= max

{︂
𝐶𝜈 ,

(︁
8𝜋
𝜅0

)︁ 1
2𝑘+2

𝐶𝜎𝑓

}︂
and we use the

error estimate from Theorem 2.23 to obtain

1
𝑁
|||𝜈 − 𝜈ℓmax |||*

2 ≤ 8𝜋max
𝑗
𝑟2𝑗

max
⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒2
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒2 (︂1 +
𝐶𝒜
𝛽𝒜

)︂2(︂
𝐶2𝑘+2
𝜈 (2𝑘)! +

8𝜋
𝜅0
𝐶2𝑘+2
𝜎𝑓

(2𝑘)!
)︂(︂

max 𝑟𝑗
ℓmax + 1

)︂1+2𝑘

≤ 8𝜋max
𝑗
𝑟2𝑗

max
⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒2
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒2 (︂1 +
𝐶𝒜
𝛽𝒜

)︂2(︂ max 𝑟𝑗
ℓmax + 1

)︂1+2𝑘

𝐶2𝑘+2
𝜈,𝜎𝑓

(2𝑘)!.

Stirling’s formula then yields that(︂
max 𝑟𝑗
ℓmax + 1

)︂1+2𝑘

𝐶2𝑘+2
𝜈,𝜎𝑓

(2𝑘)! ≤
(︂

max 𝑟𝑗
ℓmax + 1

)︂1+2𝑘

𝐶2𝑘+2
𝜈,𝜎𝑓

𝑒−2𝑘+1 (2𝑘)2𝑘+
1
2 .

In particular, for ℓmax sufficiently large, we can choose 𝛼 ∈
[︁

1
4𝐶𝜈,𝜎𝑓

, 1
2𝐶𝜈,𝜎𝑓

]︁
such that 𝑘 = 𝛼 ℓmax+1

max 𝑟𝑗
∈ N. We

then see that(︂
max 𝑟𝑗
ℓmax + 1

)︂1+2𝑘

𝐶2𝑘+2
𝜈,𝜎𝑓

𝑒−2𝑘+1 (2𝑘)2𝑘+
1
2 =

(︁𝛼
𝑘

)︁1+2𝑘

𝐶2𝑘+2
𝜈,𝜎𝑓

𝑒−2𝑘+1 (2𝑘)2𝑘+
1
2

= 𝛼1+2𝑘𝐶2𝑘+2
𝜈,𝜎𝑓

𝑒−2𝑘+122𝑘+ 1
2 𝑘−

1
2

=
𝛼𝐶2

𝜈,𝜎𝑓
𝑒
√

2
√
𝑘

(︂
4𝛼2𝐶2

𝜈,𝜎𝑓

1
𝑒2

)︂𝑘
≤

√
𝛼√︁

ℓmax+1
max 𝑟𝑗

𝐶2
𝜈,𝜎𝑓

√
2𝑒−2𝑘+1

≤
√︀

2 max 𝑟𝑗𝐶2
𝜈,𝜎𝑓

exp
(︂
−2𝛼

ℓmax + 1
max 𝑟𝑗

+ 1
)︂

≤
√︀

2 max 𝑟𝑗𝐶2
𝜈,𝜎𝑓

exp
(︂
− 1

2𝐶𝜈,𝜎𝑓

ℓmax + 1
max 𝑟𝑗

+ 1
)︂
.

We conclude that

1√
𝑁
|||𝜈 − 𝜈ℓmax |||* ≤

√︁
8𝜋max 𝑟2𝑗 (2 max 𝑟𝑗)

1
4 𝐶𝜈,𝜎𝑓

max
⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒
min

⃒⃒⃒
𝜅−𝜅0
𝜅0

⃒⃒⃒ (︂1 +
𝐶𝒜
𝛽𝒜

)︂
exp

(︂
− 1

4𝐶𝜈,𝜎𝑓

ℓmax + 1
max 𝑟𝑗

+
1
2

)︂
.

This completes the proof for the exponential convergence of the approximate induced surface charge. The
proof for the exponential convergence of the approximate total electrostatic energy is essentially identical. �
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5. Conclusion and future work

In this work, we presented a detailed numerical analysis of an integral equation formulation of the second
kind for the induced surface charges resulting on a large number of dielectric spheres of varying radii and
dielectric constants, embedded in a homogenous dielectric medium and undergoing mutual polarisation. We
derived a priori error estimates and convergence rates that do not have any explicit dependence on the number
of dielectric spheres 𝑁 in the system. In order to achieve this, we introduced a new analysis of second kind
boundary integral equations posed on spherical domains.

In order to complete a scalability analysis of the numerical algorithm under consideration, it is also necessary
to analyse computational aspects of the algorithm such as the conditioning of the linear system that arises from
the Galerkin discretisation (2.7). This topic, as well as related computational considerations, is the subject of
the contribution [27].

From the point of view of further numerical analysis, we emphasise that the differential operator which
generated all layer potentials and boundary operators in the current work was the Laplace operator. Future
theoretical work could therefore involve the analysis of 𝑁 -body systems involving more complicated differential
operators. Such operators arise, for instance, in the study of wave propagation in non-homogenous media or
electrostatic interactions between dielectric spheres in an ionic solvent.

Appendix A. Justification for the equivalence of the ||| · ||| norm

Notation. We write H̆ :=
{︁
𝑢 ∈ H (Ω−) : 𝛾−𝑢 ∈ 𝐻̆ 1

2 (𝜕Ω)
}︁
.

Intuitively, H̆ consists of harmonic functions in𝐻1 (Ω−) such that the interior Dirichlet trace of these functions
is of average zero. Consequently, it holds that H̆ is a Hilbert space with respect to the 𝐻1 semi-norm. Henceforth,
we will equip the space H̆ with the inner product given by

(𝑢, 𝑣)H̆ :=
𝑁∑︁
𝑖=1

∫︁
Ω𝑖

∇𝑢 (x) · ∇𝑣 (x) dx,

and we observe that the associated norm ‖ · ‖H̆ is equivalent to the ‖ · ‖𝐻1(Ω−) norm defined in Section 2.

Lemma A.1. The interior Dirichlet trace mapping 𝛾− : H̆ → 𝐻̆
1
2 (𝜕Ω) and the interior Neumann trace operator

𝛾−𝑁 : H̆ → 𝐻̆− 1
2 (𝜕Ω) are both bijective, continuous linear operators.

Proof. The proof follows from the well-posedness of the interior Dirichlet and Neumann problems for the Laplace
equation on Lipschitz domains. �

Notation. We define ℰ : 𝐻̆
1
2 (𝜕Ω) → H̆ as the inverse of the interior Dirichlet trace operator 𝛾− : H̆ → 𝐻̆

1
2 (𝜕Ω).

Corollary A.2. Lemma A.1 implies in particular that the interior trace operator 𝛾− : H̆ → 𝐻̆
1
2 (𝜕Ω) is an

isomorphism. It follows that we can define a new norm ‖ · ‖
𝐻̆

1
2 (𝜕Ω)

on the space 𝐻̆
1
2 (𝜕Ω) that is equivalent to

the Sobolev–Slobodeckij norm defined in Section 2 by setting for all 𝜆 ∈ 𝐻̆ 1
2 (𝜕Ω)

‖𝜆‖
𝐻̆

1
2 (𝜕Ω)

= ‖ℰ𝜆‖H̆.

Lemma A.1 also yields the following corollary.

Corollary A.3. The Dirichlet-to-Neumann map DtN: 𝐻̆
1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω) is a bijective operator.
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Remark A.4. The Dirichlet-to-Neumann map DtN: 𝐻̆
1
2 (𝜕Ω) → 𝐻̆− 1

2 (𝜕Ω) yields an alternative characterisa-
tion of the norm ‖ · ‖

𝐻̆
1
2 (𝜕Ω)

. Indeed, let 𝑢 ∈ 𝐻̆ 1
2 (𝜕Ω). Then Green’s identity implies that

‖𝑢‖2
𝐻̆

1
2 (𝜕Ω)

= ‖ℰ𝑢‖2H̆ =
𝑁∑︁
𝑖=1

∫︁
Ω𝑖

∇ℰ𝑢 (x) · ∇ℰ𝑢 (x) dx

=
𝑁∑︁
𝑖=1

⟨DtN𝑢|𝜕Ω𝑖
, 𝑢|𝜕Ω𝑖

⟩
𝐻−

1
2 (𝜕Ω𝑖)×𝐻

1
2 (𝜕Ω𝑖)

= ⟨DtN𝑢, 𝑢⟩
𝐻−

1
2 (𝜕Ω)×𝐻

1
2 (𝜕Ω)

.

Corollary A.5. Combining Corollary A.2 and Remark A.4 yields that the norm ||| · ||| : 𝐻 1
2 (𝜕Ω) → R defined

through Definition 2.15 is indeed equivalent to the ‖ · ‖
𝐻

1
2 (𝜕Ω)

norm introduced in Section 2.

Appendix B. Proof of Lemma 2.6

Proof. Let Φ := (Φ−,Φ+) ∈ H (Ω−)×H (Ω+) be a solution to the transmission problem (2.1). It follows from
Green’s representation theorem (see, e.g., [49], Thm. 3.1.6) that for each 𝑠 ∈ {+,−} it holds that

Φ𝑠 = 𝒮
(︀
𝛾−𝑁Φ− − 𝛾+

𝑁Φ+
)︀
|Ω𝑠 .

It follows from the hypothesis of the transmission problem (2.1) that

−𝛾+
𝑁Φ+ =

4𝜋
𝜅0
𝜎𝑓 −

𝜅

𝜅0
𝛾−𝑁Φ−,

so that

𝛾−Φ− = 𝛾−𝒮
(︂
𝛾−𝑁Φ− +

4𝜋
𝜅0
𝜎𝑓 −

𝜅

𝜅0
𝛾−𝑁Φ−

)︂
= 𝒱

(︂
1
𝜅0

(︀
𝜅0𝛾

−
𝑁Φ− − 𝜅𝛾−𝑁Φ−

)︀
+

4𝜋
𝜅0
𝜎𝑓

)︂
= 𝒱

(︂
𝜅0 − 𝜅

𝜅0
𝛾−𝑁Φ−

)︂
+

4𝜋
𝜅0
𝒱𝜎𝑓

= 𝒱
(︂
𝜅0 − 𝜅

𝜅0
DtN𝛾−Φ−

)︂
+

4𝜋
𝜅0
𝒱𝜎𝑓 .

Define 𝜈 := 𝒱−1𝛾−Φ− and use the fact that 𝒱−1 : 𝐻
1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) is a bijection to obtain that

𝜈 =
(︁𝜅0 − 𝜅

𝜅0
DtN𝒱𝜈

)︁
+

4𝜋
𝜅0
𝜎𝑓 .

This completes the first part of the proof.
For the converse, let 𝜈 ∈ 𝐻− 1

2 (𝜕Ω) be a solution to the BIE (2.2). It follows from the jump properties of the
single layer potential (see, e.g., [49], Thm. 3.3.1) that

𝜈 = 𝛾−𝑁𝒮𝜈 − 𝛾+
𝑁𝒮𝜈.

Define (Φ−,Φ+) =
(︀
𝒮𝜈|Ω− ,𝒮𝜈|Ω+

)︀
. The definition of the single layer potential implies that we need only

check the jump condition for the normal derivative. We observe that

𝜅𝛾−𝑁Φ− − 𝜅0𝛾
+
𝑁Φ+ = 𝜅DtN𝛾−Φ− + 𝜅0𝜈 − 𝜅0DtN𝛾−Φ−

= (𝜅− 𝜅0) DtN𝛾−Φ− + 𝜅0𝜈.
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It follows from the hypothesis of BIE (2.2) that

𝜅𝛾−𝑁Φ− − 𝜅0𝛾
+
𝑁Φ+ = (𝜅− 𝜅0) DtN𝛾−Φ− + 𝜅0𝜈 = 4𝜋𝜎𝑓 .

This completes the proof. �
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[29] P. Houston and E. Süli, ℎ𝑝-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM
J. Sci. Comput. 23 (2001) 1226–1252.
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