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AN INTEGRAL EQUATION FORMULATION OF THE N-BODY DIELECTRIC
SPHERES PROBLEM. PART I: NUMERICAL ANALYSIS

MuHAMMAD HASSAN* AND BENJAMIN STAMM

Abstract. In this article, we analyse an integral equation of the second kind that represents the
solution of N interacting dielectric spherical particles undergoing mutual polarisation. A traditional
analysis can not quantify the scaling of the stability constants- and thus the approximation error-
with respect to the number N of involved dielectric spheres. We develop a new a priori error analysis
that demonstrates N-independent stability of the continuous and discrete formulations of the integral
equation. Consequently, we obtain convergence rates that are independent of V.
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1. INTRODUCTION

The so-called N-body problem is a general term used to describe a vast category of physical problems involving
the interaction of a large number of objects. Such problems arise in a variety of contexts in fields as diverse
as quantum mechanics, molecular dynamics, astrophysics and electrostatics. The origin of the N-body problem
lies in the Principia Mathematica wherein Newton considered the motion of celestial bodies [44]. Starting with
the work of Henri Poincaré [45], which incidentally led to the development of chaos theory, a significant amount
of evidence has been accumulated that obtaining an analytic solution to the N-body problem in a tractable
manner is not possible (see, e.g., [47,53]). As a consequence, there has been a great deal of interest in developing
numerical methods that can efficiently compute approximate solutions to the N-body problem. An important
benchmark to assess the quality of any such numerical method has been its ability to obtain a linear scaling, i.e.,
given a system composed of N interacting objects, to achieve time and computational complexity of order O(N).
Attempts to achieve this benchmark have led to the development of extremely efficient numerical algorithms
such as fast multipole (FMM) and particle mesh methods, which have been applied very successfully to a variety
of N-body problems (see, e.g., [23,24] for an explanation of the FMM and [28] for particle mesh methods).

In the discipline of chemical physics, the interactions between charged particles in concentrated colloidal
solutions (see, e.g., [6]) and Coulombic crystals (see, e.g., [25]), or the phenomena of electrostatic self-assembly
(see, e.g., [40]) and super lattices (see, e.g., [50]) are all examples of N-body problems in electrostatics, and
an accurate description of the electrostatic forces between the interacting particles is necessary in order to
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understand the physics underlying each of these phenomena. Until quite recently however, the state-of-the-art
for the computation of the electrostatic forces between a large number of charged particles was quite under-
developed. Most results in the literature relied on so-called image charge methods or multipole expansion
approaches (see, e.g., [42,46,56] for the former, [12,36, 38| for the latter and [4,20] for other approaches). The
key deficiency of such numerical methods is that they have often not been formulated in a manner which allows a
systematic numerical analysis of the algorithm. Recently, in [34], the authors proposed a computational method
based on a Galerkin discretisation of an integral equation formulation of the second kind for the induced surface
charges resulting on a large number of dielectric spheres of varying radii and dielectric constants, embedded
in a homogenous dielectric medium and undergoing mutual polarisation. Numerical experiments indicated that
this algorithm displayed some interesting behaviour:

(1) For a fixed number of degrees of freedom per sphere, the average error on each sphere remained bounded
when increasing the number of dielectric spheres.

(2) For a fixed number of dielectric spheres, the total error decayed exponentially when increasing the degrees
of freedom per sphere.

(3) Through the use of the FMM, the numerical method achieved computational complexity that scaled linearly
with respect to the number of dielectric spheres.

Points (1) and (2) deal with the accuracy of the method and point (3) gives a measure of the computational
scalability of the numerical algorithm. Taken together, these numerical observations suggest that the method
proposed in [34] is linear scaling in accuracy, i.e., in order to obtain an approximate solution with fixed aver-
age (the total error scaled by N) or relative error, the computational cost of the algorithm scales as O(N).
Consequently, the integral equation-based approach proposed by Lindgren et al. is a significant advance in the
state-of-the-art for the computation of the electrostatic interactions between a large number of charged particles
undergoing mutual polarisation.

It is now natural to ask if one can provide a rigorous mathematical justification for the behaviour exhibited
by the numerical method in points (1)—(3). More precisely, can one prove that the average or relative error is
bounded independent of the number of objects in the problem? And that the computational complexity of the
numerical method proposed in [34] scales linearly with respect to the number of objects in the problem? The
current article is the first in a series of two and focuses on the numerical analysis of the algorithm introduced
in [34] in order to provide a mathematically sound answer to the first question. More specifically, we prove that

(a) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, the integral equation
formulation of the second kind proposed in [34] that describes the induced surface charges resulting on these
dielectric spheres undergoing mutual polarisation is well-posed.

(b) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, the Galerkin dis-
cretisation of this second-kind integral equation is also well-posed.

(c) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, there exists an
upper bound on the relative error of the approximate solution that does not explicitly depend on the number
N of dielectric spheres in the system. Consequently, we can deduce N-independent error estimates for any
family of geometrical configurations that satisfies certain geometrical assumptions which are described in
detail later.

(d) For any fixed geometrical configuration of non-intersecting spherical dielectric particles, given certain
assumptions on the regularity of the exact solution, the total error of the approximate solution decays
exponentially as the degrees of freedom per sphere are increased.

A detailed complexity analysis of this numerical method which provides a mathematically sound answer to
the second question is the subject of the contribution [27].

N-body problems have been widely studied in the literature in the context of electromagnetic or acoustic
scattering by a large number of obstacles (see, e.g., [1,8,9,21,22,26,55]). Such scattering problems are significantly
more complicated to analyse than the electrostatic interaction problem we consider here because the underlying
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differential operator in wave phenomena is indefinite, which causes many technical difficulties. Consequently, it
is already a significant challenge to design a computationally efficient numerical algorithm that is stable with
respect to a large regime of wave numbers and obstacle sizes and placements, let alone perform a comprehensive
numerical analysis of the algorithm and derive rigorous convergence rates. Thus, articles such as [1,22,26] quoted
above focus mostly on the design of efficient computational methods and use numerical tests to validate their
proposals. On the other hand while articles such as [14,21] do establish convergence rates with respect to the
degrees of freedom, these rates are not shown to be independent of the number of obstacles N. Incidentally,
several of the articles mentioned above propose algorithms that are based on integral equations of the first kind
(see [8,9,14,55] quoted above). This framework, while suitable for numerical analysis, suffers from a well-known
problem: Galerkin discretisations of integral equations of the first kind typically lead to dense, ill-conditioned
solution matrices which causes slow convergence of the iterative solvers. As a remedy, several of these articles have
proposed efficient preconditioners (see e.g., the article [8]) but the introduction of preconditioning techniques
further complicates questions of scalability. This computational deficiency is precisely why Lindgren et al. [34]
proposed and why we analyse an integral equation formulation of the second kind.

There is an abundant literature on integral equations of the second kind (see, e.g., the books [32,49], or the
articles [2,3,16,17,39,52]). In particular, the well-posedness theory of second kind integral equations is well
established, and it is understood that Galerkin discretisations of second kind integral equations typically leads to
well conditioned solution matrices. As a consequence, second kind integral equations have been constructed for
the solutions of a variety of problems. More recently, such formulations have also been proposed for problems very
similar to the N-body dielectric sphere problem including, for instance, acoustic and electromagnetic scattering
by composite structures (see, e.g., [7,10,43,48]), and multi subdomain diffusion [11]. The key mathematical
deficiency of such second kind integral formulations is that stability estimates- and thus also error estimates-
are often difficult to obtain except in certain special cases.

Therefore, obtaining stability and error estimates for our problem using the existing well-posedness analysis
in the literature is not straight forward. To make matters worse, most integral equations are applied in situations
where the size of the domain is fized so the existing analysis in the literature focuses on establishing the existence
of stability and continuity constants of the boundary integral operators that are independent of the degrees of
freedom, such as the mesh width or the boundary element size. Since the stability and continuity constants
appear in the error estimates, it is crucial to establish that these constants are explicitly independent of the
number of objects in the problem setting. Unfortunately, this is not a priori clear and in some cases is not even
true for the classical well-posedness analysis. Consequently, in order to prove points (¢) and (d), we have had
to introduce a new well-posedness analysis for establishing points (a) and (b). All these issues are discussed in
more detail in Section 2.5.

The remainder of this article is organised as follows. In Section 2, we describe the problem setting, state and
discuss our main results, and consider the limitations of the existing classical analysis of second kind integral
equations in the literature. Section 3 then contains numerical experiments that validate our theoretical results.
In Section 4, we state intermediate lemmas and the proofs of our main results. Finally, in Section 5, we present
our conclusion and discuss future directions of research.

2. PROBLEM SETTING AND MAIN RESULTS

Throughout this article, we will use standard results and notation from the theory of integral equations. We
follow the notation of, and use as the primary reference, the book of Sauter and Schwab on boundary elements
methods [49].

2.1. Setting and notation

To begin with we would like to describe precisely the types of geometrical situations we will consider in
this article. As indicated in the introduction, we are interested in studying geometrical configurations that are
the unions of an arbitrary number N of non-intersecting open balls with varying radii in three dimensions.



S68 M. HASSAN AND B. STAMM

However, in order to be completely rigorous in our claim of N-independent error estimates, we must impose
certain assumptions on the types of geometries we consider. To this end, let Z denote a countable indexing
set. We consider a so-called family of geometries {Q#} ».;. Each element Q7 C R? in this family is the (set)
union of a fixed number of non-intersecting open balls of varying locations and radii with associated dielectric
constants, and therefore represents a particular physical geometric situation. It is easy to see that each element
Qg of this family of geometries is uniquely determined by the following four parameters:

— A non-zero number Nz € N, which represents the total number of dielectric spherical particles that compose

the geometry Q.
FANF

— A collection of points {xi i1 € R3, which represent the centres of the spherical particles composing the

geometry Qr.
— A collection of positive real numbers {r?

composing the geometry Qr.

N . . . .
}Z.:fl € R, which represent the radii of the spherical particles

. o N . .
— A collection of positive real numbers {x7 }i:O € R. Here, k] denotes the dielectric constant of the external

medium while {mzf }f\il represent the dielectric constants of each dielectric sphere.

Indeed, using the first three parameters we can define the open balls Q7 = B,, (x;) CR3, i € {1,..., Nz}
which represent the spherical dielectric particles composing the geometry Qz, i.e., Qr = Uil\i 7 Q7. Moreover,

the fourth parameter {nf }i]\;O denotes the dielectric constants associated with this geometry.
We now impose the following three important assumptions on the above parameters:

A1l (Uniformly bounded radii). There exist constants 7> > 0 and 73 > 0 such that

inf min 7S >r®

; * and sup  max 1] <1,
FET i=1,..,.Nx

Fez =1,....NF

A2 (Uniformly bounded minimal separation). There exists a constant €> > 0 such that

}Iéfz i’j:ql,.ifl’NF (< — Xf\ —rl - rf) > >,
i

A3 (Uniformly bounded dielectric constants). There exist constants £ > 0 and x5° > 0 such that

inf  min &7 >k and sup max Ii]:<lii_o.

FeZ i=1,...,.Nr Fer i=1,....Nx

In other words we assume that the family of geometries {Q2r} ., we consider in this article describe physical
situations where the radii of the dielectric spherical particles, the minimum inter-sphere separation distance
and the dielectric constants are all uniformly bounded. These assumptions are necessary because, as we will
show, the error estimates we derive, while explicitly independent of the number of dielectric particles Nz, do
depend on other geometrical parameters, and we would thus like to avoid situations where these geometric
parameters degrade with increasing Nx. We remark that from a practical perspective, these assumptions do not
greatly limit the scope of our results. Indeed, in many physical applications one typically considers non-metallic
dielectric particles which neither have vanishing or exploding dielectric constants nor vanishing or exploding
radii (see, e.g., [25,33,35,40,51]).

In the remainder of this article, we will consider a fixed geometry from the family of geometries {Qr}
satisfying the assumptions (A1)—(A3). To avoid bulky notation we will drop the superscript and subscript F

and denote this geometry by 7. The geometry is constructed as follows: Let N € N, let {xi}ﬁvzl € R3 be a
collection of points in R? and let {m}iv:l € R be a collection of positive real numbers, and for each i € {1,..., N}

let Q; := B,, (x;) C R? be the open ball of radius r; > 0 centred at the point x;. Then 2~ C R3 is defined as
Q~ := U, Q,. Furthermore, we define O := R?\ Q—, and we write 92 for the boundary of Q= and 7 (x) for
the unit normal vector at x € 92 pointing towards the exterior of Q™.
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Next, let {m}fv:o € R be a collection of positive real numbers and let the function x: 92 — R be defined
as k (x) := k; for x € 99;. Thus,  is a piecewise constant function that takes constant positive values on the
boundary of each open ball 0€);, i = 1,..., N. Physically, this function represents the dielectric constant of each
of these open balls while the constant x represents the dielectric constant of the medium. We observe that by
definition for each i € {1,..., N}, either “¢[gq, > 0 or * |50, € (—1,0].

Following standard practice, we write H'(Q7) := {u€ L*(Q7):Vue L*(Q7)} with the norm
Hu||%,1(9 y = ZZ 1 ||u||L2(Q + ||Vu||L2 (;)- Moreover, inspired by the definition in Section 2.9.2.4 of [49)]

we define the weighted Sobolev space H! (") as the completion of CS5 ~(QF) with respect to the norm

comp
[|wl|3 @h = [ 1v+"2||2 dx+ ||Vv|? T2(a+)- Note that functions that satisfy the decay conditions associated with
exterior Laplace problems will belong to this space.

Next, we denote by H 3 (09) the Sobolev space of order 1 5 equipped with the Sobolev—Slobodeckij norm

2 — A=A 2
IR H } (00 Z . HAHLZ(BQ )—I-faﬂ faﬂ ‘x J - dxdy. Notlce that we have chosen to define || - ||H (6(2)

a sum of local norms on each sphere. Moreover, we define H~2 (9Q) := (H 3 (89)) and we equip this Sobolev

space with the canonical dual norm

o, 7’D>H*%(aﬂ)xH%(aQ)

lell 1 = sup Vo e H7 (09).

H %00
202 0£peH3 (59) ”77[}”11%(89)

We remark that using the Lebesgue space L2 (89) as a pivot space for Hz (9Q) and H —3 (09), we obtain that
the duality pairing (-, ->H_% (o) x 1} (89 reduces to the usual L? inner product (-, -) 12(o0) for sufficiently regular
functions (see, e.g., [49], Chap. 2). For the sake of brevity, when there is no possibility of confusion, we will use

the notation (-,-)gn to denote the duality pairing (-, '>H*%(aﬂ)xH%(aQ)’

We introduce v~ : H' (Q7) — H2 (8Q) and vt: H' (Q1) — H2 (8Q) as the continuous, linear and surjective
interior and exterior Dirichlet trace operators, respectively (see, e.g., [49], Thms. 2.6.8 and 2.6.11 or [41],
Thm. 3.38). Moreover, for s € {+ —}, we define the closed subspace H (Q°) := {u € H' (Q%) : Au=0in Q°},
and we write yy: H(Q™) — H~ 3 (89) and v H(QT) — H~2 (%) for the interior and exterior Neumann
trace operator, respectively (see [49], Thm. 2.8.3 for precise conventions). Note that both the interior and exterior
Dirichlet and Neumann trace operators can be defined analogously for functions of appropriate regularity defined
on Q~UQT or R3. In addition, we introduce the so-called (interior) Dirichlet-to-Neumann map DtN: Hz (9Q) —
H~2 (9Q) as follows: Given any A € Hz (9), let uy € H (Q~) denote the unique harmonic function in H' (Q~)
such that y~uy = A. Then we define DtN := 7y u,. Note that local Dirichlet-to-Neumann maps can be defined
analogously on each sphere 0, i=1,...,N.

Next, for each v € H=2 (9Q), A € Hz (9Q) and all x € R?\ Q we define the functions

S0 6= [ Y

o 4mlx — Y‘
1

D) (x) := o ¥)n(y)- Vs Tk =y W

The mappings S and D are known as the single layer and double layer potentlals respectively. It can be
shown (see, e.g., [49], Chap. 2) that S is a bounded linear operator from H~z (8Q) to HY_ (R?) and D is a

bounded linear operator from H: (092) to H} . (R‘3 \89), and both § and D map into the space of harmonic
functions on the complement R? \ 99 of the boundary.
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As the final step, we define the following linear bounded boundary integral operators:
Vi= (7 e8): HH(00) - HI@9), K =(y oD+ %1) . H (990) — H? (09)
W= —(yxoD): HE (09) — H 3 (09),  K*:= 1y o8- %I) L H(00) — H % (09).

Here I denotes the identity operator on the relevant trace space. The mapping V is known as the single layer
boundary operator, the mapping K is known as the double layer boundary operator, the mapping I* is known
as the adjoint double layer boundary operator and the mapping W is known as the hypersingular boundary
operator. Detailed definitions and a discussion of the properties of these boundary integral operators can be
found in Chapter 3 of [49]. We state three properties in particular that will be used in the sequel.

Property 1 ([49], Thm. 3.5.3). The single layer boundary operator V: H~= (9Q) — Hz (91) is Hermitian and
coercive, i.e., there exists a constant ¢y > 0 such that for all functions o € H -3 (09) it holds that

(. V)0 = evllol?y -

This implies in particular that the inverse V=': Hz (8Q) — H~2 (9Q) is also a Hermitian, coercive and
bounded linear operator. Consequently, V induces a norm || - ||y and associated inner product on H ~3 (09) and
the inverse V! induces a norm || - ||ly-1 and associated inner product on H?z (9Q). We emphasise here that
while the coercivity constant ¢y of the single layer boundary operator a priori depends on the geometry Q—,
the independence of ¢y, with respect to the number of open balls IV in the system is a key point in the present
analysis and will be the subject of further discussion in Section 4.1 (see, in particular, Lems. 4.7 and 4.8).

Property 2 ([49], Thm. 3.5.3). The hypersingular boundary operator W: Hz (9Q) — Hz (9) is Hermitian,
non-negative and coercive on a subspace of H 3 (09), i.e., there exists a constant c¢yy > 0 such that for all

functions A € H3? (09Q) with vazl ’fBQi A (x) dx‘ =0, it holds that
2
WA, N)aa > CW||>\||H%(8Q)-

Property 3 ([49], Thm. 3.8.7). The coercivity constants of the single layer and hypersingular boundary oper-
ators satisfy cycyy < i. Therefore the constant

1 n /1
Cc ‘= 2 4 CyCyy,

We are now ready to state the problem we wish to analyse.

is well-defined and ¢ € [%, 1).

2.2. Abstract dielectric electrostatic interaction problem

Let K denote the Coulomb constant and let o; € H~2 (8Q) be arbitrary. For each s € {+, —} find a function
®s € H (Qf) with the property that

VPOt -4 0 =0 in H? (09),
FANDT — kv @t = dn Ko in H™z (09),
|®T (x)| < OJx|™* for |x| — oc. (2.1)

Remark 2.1. We may assume without loss of generality that K = 1. This is, for instance, true if one picks the
CGS system of units.
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Remark 2.2. In the physics literature, oy € H —3 (09) is called the free charge and is a known quantity. The
unknown function ®° € H (Q*) is the electric potential that results after the polarisation of the free charge
residing on the surface of the dielectric spheres 09;, i =1,..., N.

Remark 2.3. The operator equation (2.1) is very similar to the abstract transmission problem for second order
elliptic PDEs. A detailed overview of the transmission problem can, for example, be found in Chapter 2.9 of
[49].

From a practical perspective, the main difficulty in solving the transmission problem (2.1) is the fact that
this problem is posed on the unbounded domain R3. The usual approach in the literature to circumventing
this difficulty is to appeal to the theory of integral equations and reformulate an operator equation posed on
some domain Q~ U Q7T such as equation (2.1), as a so-called boundary integral equation (BIE) posed on the
interface 02 (see, e.g., [41] or [49]).

Integral equation formulation for the induced charges
Let oy € H™2 (89). Find v € H™2 (9Q) with the property that

— 4
N DY)y = oy (2.2)
Y] Y]

Remark 2.4. From a physical point of view, the unknown v € H-z (09) in the integral equation (2.2) is the
induced surface charge on each sphere 0€);, i =1,..., N.

Remark 2.5. Consider the setting of the integral equation (2.2). Suppose there is some open ball
Q;, 5 € {1,...,N} such that kK = ko on 08;. Then it follows that the induced surface charge v; on sphere
0f); is simply given by v; = %Uﬂj where o ; denotes the free charge on 0f);. Consequently, throughout the
remainder of this article, we will assume that x # k¢ on all the spheres. Note that physically, the situation
Kk = Ko on 0§); corresponds to no polarisation on the sphere 0§2;.

The boundary integral equation (2.2) can be derived from the transmission problem (2.1) using a single layer
ansatz. Indeed, we have the following lemma:

Lemma 2.6. Let ® := (¢, ®") € H(Q™) x H(QT) be a solution to the transmission problem (2.1). Then
v =Vt (y"®7) is a solution to the BIE (2.2). Conversely, let v € H=2 (8Q) be a solution to the BIE (2.2).
Then (®—,®T) := (SV|(27,SV‘Q+) is a solution to the transmission problem (2.1).

The proof of Lemma 2.6 can be found in Appendix B.

Remark 2.7. We have claimed in the introduction that the BIE (2.2) is essentially an integral equation of the
second kind. This assertion is discussed in more detail in Section 2.5.

A key quantity of interest in physical applications is the total electrostatic energy associated with the free
1 . . 1
charge oy € H2 (0) and the resulting induced surface charge v € H~2 (09).

Definition 2.8 (Energy functional and total electrostatic energy). Let o5 € H~2 (). Then we define the
electrostatic energy functional &, : H —3 (0Q2) — R as the bounded linear mapping with the property that for
all o € H=2 (99) it holds that

1 1
&y (0) = §<UfaV0>an = 5((}3 Vo), (2.3)

and we define the total electrostatic energy of the system as &,, (v) where v € H~2 (99) is the solution to the
integral equation (2.2).
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For clarity of exposition, we now define the relevant boundary integral operator.
Definition 2.9. We define the linear operator A: Hz (09) — Hz (09) as the mapping with the property that
for all A € Hz (99) it holds that
Axi= X = VDIN(FE2EY),
R0

In addition, we denote by A*: H~2 (9Q) — H~2 (9) the adjoint operator of A.
The BIE (2.2) now has a straightforward weak formulation.

Weak formulation of the integral equation (2.2)

Let oy € H™ 2 (092) and let A*: H™2 (9Q) — H~2 (8Q) denote the adjoint of the operator A given by
Definition 2.9. Find v € H~2 (9Q) such that for all A € H2 (99) it holds that

. 4
(A*v, )‘>asz = <0f7>\>89' (2.4)

Ko
Next, we state the Galerkin discretisation of the boundary integral equation (2.2).

2.3. Galerkin discretisation

We first define the relevant approximation spaces. In the sequel, we will denote by Ny the set of non-negative
integers.

Definition 2.10 (Spherical harmonics). Let ¢ € Ny and m € {—¢,...,¢} be integers. Then we define the
function Y;": S? - R as

(—1)™ V2 +1( ;),le‘(cos(e))Sin(|m|¢)’ it m <0,

4

i (6,9) := 2ELpm (cos (6 )) if m=0,
(-1 V2 zﬁl Eﬂ-i-m;'PZ (cos () ) cos (mg), if m >0,

where P, denotes the associated Legendre polynomial of degree ¢ and order m. The function V" is known as
the real-valued L2?-orthonormal spherical harmonic of degree £ and order m.

Definition 2.11 (Approximation space on a sphere). Let Oy, C R? be an open ball of radius r > 0 centred
at the point xg G R3 and let l.x € N. We define the finite-dimensional Hilbert space W tmax (00%,) C
Hz (00y,) C H 2 (00x,) as the vector space

fmax m=+¢
Whnex (90,,) := {u 004, — R such that u ( Z Z ViRY <x §0|)
0
£=0 m=—/4

where all [u]y* € R},

equipped with the inner product

Lmax M= +1’

(ua U)Wemax (aoxo) = r? Z Z U Zn Yu,v € W bmax (30,(0) . (2.5)

(=1 m_ff

It is now straightforward to extend the Hilbert space defined in Definition 2.11 to the domain 9f2.
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Definition 2.12 (Global approximation space). We define the finite-dimensional Hilbert space Wfmax C
Hz (0Q) C H™= (99) as the vector space

- {u: 99 — R such that ¥i € {1,..., N} : ulog, € Whm= (9;) }

equipped with the inner product

N
(U V) emax = Z (U5 V) yyrtamas (92,) Yu,v € Whnex, (2.6)

i=1
Galerkin discretisation of the integral equation (2.2)

Let oy € H—3 (09) and let £pax € N. Find vy, € Whmax such that for all ¢y € Wtmax it holds that

max max

N dr
(A V> V) 12 (002) = P (05 Vbman) 12(002) - (2.7)

2.4. Main results

We begin this section by fixing some additional notation and introducing a new norm and inner product on
1
the space Hz (0N2) that will aid our subsequent analysis.

Notation. We define C (02) as the set of functions given by
C(0Q) :={u: 9Q - R:Vi=1,..., N the restriction u|sq, is a constant function},

and we observe that C (9Q) is a closed subspace of dimension N of Hz (92) under the L2 (9Q) norm (since the
Slobodeckij semi-norm of constant functions is zero).

Notation. We define the function spaces Hz (99) and H~z (9Q) as
HE(09) == {u € H¥ (99) ¢ (u,0) 1290 =00 €C (39)} :
H%(0Q) = {¢ € H 3 (09) : (¢,v)00 =00 eC (ag)} :

and we observe that both sets are Banach spaces under the Sobolev—Slobodeckij norms introduced earlier.

. L ~ 1 . . .
Intuitively, the spaces Hz (092) and H~2 (0)) are trace spaces that do not contain any piecewise constant
functions.The following simple lemma follows from these definitions.

Lemma 2.13. There exist complementary decompositions (in the sense of Brezis [5], Sect. 2.4) of the spaces
Hz (8Q) and H™z (09) given by

H? (09)

H? (0Q) & C (09), (2.8)
H™7 (0Q) = H 7 (0Q) & C (09) .

D=

_ Moreover, the projection operators Pt: Hz (8Q) — Hz (9Q) and Py: H= (09Q) — C (09), Q¢ : H™2 (8Q) —
H~2 (89), and Qo: H™2 (Q) — C (9Q) associated with these complementary decompositions are all bounded.

The complementary decomposition introduced through Lemma 2.13 is at the heart of our well-posedness
analysis as will become clear in Section 4.

Remark 2.14. Consider the complementary decomposition introduced through Lemma 2.13. It is a simple
exercise to show that for all A € Hz (8Q) and all ¢ € H~ 2 (9Q) the following relations hold:

(Qoo, PyA),, =0 and (Qgo, PoA),, = 0.
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In order to take full advantage of this decomposition of H 2 (09), it is necessary to introduce a new norm on

3 (09).
Definition 2.15. We define on Hz (89) a new norm ||| - |||: H= (99) — R given by
1
VA€ H2 (09) : ([P := IPoAl 7200y + (DENA, X) o

Remark 2.16. We claim that the norm ||| - ||| is equivalent to the || - HH%(@Q) norm introduced in Section 2

(see Appendix A for a proof). Consequently, there exists a constant cequiv > 1 such that for all A € H 3 (09) it

holds that ——|[[[A]]| < [|A]l < Cequiv]||A]]]- It is important to note that the equivalence constant cequiv is
equiv

HZ (09) =
independent of N.

Henceforth, we adopt the convention that the Hilbert space H?2 (9Q) is equipped with the ||| - ||| norm defined
through Definition 2.15. The main advantage of using the new ||| - ||| norm is that it preserves the structure of
the complementary decomposition of Hz (8€2). Indeed, for any function A € Hz (99), we have

A2 = 1Pl 50 + (DENA, Xbog, = [[[PoMI[2 + [[BEAI 2.

Remark 2. 17 We remark that under this convention, due to the equivalence of norms, the definitions of the
dual space H~ (89) and the associated duality pairing (-, -)sq remain unchanged. Thus, _we can define a new

dual norm ||| - |||*: 2 (09)) — R as the mapping with the property that for all ¢ € H~2 (99) it holds that
(0, ¥) o0
lloll[* = sup :
1111

0£peH S (59)

and we observe that the new |||-|||* dual norm on H~2 (%) is equivalent to the canonical dual norm ||- HH,% °%)
with equivalence constant that is once again independent of V.

Remark 2.18. It is a simple exercise to prove that the Dirichlet-to-Neumann map DtN: Hz (8Q) — H2 (9Q)
is invertible and satisfies for all A € Hz (99)

[IIDENX][|* = [[IAl]]-
This fact will be used often in the sequel.

Next, we define the higher regularity spaces and norms that are used in the error estimates.

Definition 2.19. Let s > 0 be a real number and let O, C R? be an open ball of radius r > 0 centred at the
point xg € R3. Then we define constructively the fractional Sobolev space H* (00y) as the set

oo m=+~
H? (004,) := {u 004, — R such that u ( Z Z (|x20>
0

=0 m=—¢

oo m=+~ 2s
where all [u]}" € R satisfy Z Z ( ) 17)? <<>o}7

{=1 m=—/¢

equipped with the inner product

oo m=-+~ 2s
(1, 0) - (00, =2l ]S+ Y ( ) TRl Yu,v € H® (00y,) . (2.9)

{=1 m=—/¢

Additionally, we write ||| - |||HS(8O ) to denote the norm induced by the inner-product (-, ~)HS(80 )
o .
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Remark 2.20. Definition 2.19 is an intrinsic definition of the fractional Sobolev space H?® (00x, ), which coin-
cides with the definition of these fractional Sobolev spaces involving the Sobolev—Slobodeckij inner product (see,
e.g., [15]). The equivalence follows from the fact that the spherical harmonics are eigenvectors of the self-adjoint
Laplace-Beltrami operator Ago, =~ as discussed in, e.g., Section 7 of Chapter 1 in [37].

Definition 2.19 suggests a natural intrinsic definition of the fractional Sobolev spaces on 9f2.

Definition 2.21. Let s > 0 be a real number. Then we define the Hilbert space H?® (9f2) as the set
H?(09Q) := {u: 00 — R such that Vi € 1,..., N: ulgq, € H® (09;) },

equipped with the inner product

N
(U7 U)HS(BQ) = Z ('LL, U)Hs(aﬂi) VU, NS Hs (89) . (210)
i=1
Additionally, we write [[| - [|[s:(a0) to denote the norm induced by the inner-product (-, ") ;. (gq)-
Remark 2.22. A direct calculation shows that the norm ||| - |HH% 69) coincides with the ||| - ||| norm defined
through Definition 2.15. Moreover, the [|[-[|| 1 (og DT coincides with the ||- ||y tmax nOTM 0N the space W tmax.

We are now ready to state our main results.

Theorem 2.23 (Error estimates). Let s > 0 be a real number, let lmax € N, let op € H®(09Q), let
Eopt H > (09) — R be the electrostatic energy functional defined through Definition 2.8, let v € H > (09) be the
unique solution to the weak formulation (2.4) with right hand side given by oy, let vy, € W= be the unique
solution to the Galerkin discretisation defined through equation (2.7), and let QF: H2 (8Q) — H~2 (8Q)
denote the projection operator defined through Lemma 2.15. Then there exists a constant Ciain > 0 that depends
on the radii of the open balls, the dielectric constants and the minimal inter-sphere separation distance but is
independent of both s and the number of open balls N such that

s+3
2 1 87 i
Qo V||| s (802 + . I[1Qq ol 2500

maxr7r;
v—u <O — L
= 1 i (8

maxr; sta 8
€y ) =y (1) | < Conin () MV (1128 riomy + S 1@ o) -

max+1

Theorem 2.23 is a standard a priori error estimate for the approximate induced surface charge and approx-
imate electrostatic energy obtained by solving the Galerkin discretisation (2.7). We emphasise that the most
important aspect of this error estimate is that the convergence rate pre-factor Cyain is explicitly independent
of the number of objects N. Consequently, for any geometry in the family of geometries {Qx} ., satisfying
assumptions (A1)—(A3), the following holds: Given a fixed number of degrees of freedom £;,,x per sphere, the
relative error in the induced surface charge and in the total electrostatic energy normalised by the free-charge
electrostatic energy does not increase as N increases. This implies in particular that for any configuration in the
family of geometries {Q£} r 7, in order to guarantee the same relative accuracy in the induced surface charge,
one does not need to increase the number of degrees of freedom per sphere as N increases.

Theorem 2.24 (Exponential convergence). Let lpax € N, let Cpain denote the convergence rate pre-factor
from Theorem 2.23, let oy € C™ (09) be analytic on 09, let &, : H-3 (09) — R be the electrostatic energy
functional defined through Definition 2.8, let v € H™2 (09) be the unique solution to the weak formulation (2.4)
with right hand side given by oy, and let v, € Whmax be the unique solution to the Galerkin discretisation

max
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defined through equation (2.7). For ly.x sufficiently large, if v is analytic on 02 then there exists a constant
Cu,o; > 0 depending on the exact solution v and the free charge oy such that

1 . /
ﬁ v —ve, . " < 4/87max T]z (2maxr;) 1C,,, maxr, 5
1 1 1 gmax +1 1
o (V) = Eay (i) | < \/Smmard (2max ;) Co, Conainll [Vl exp <4cw “maxr; | 2) |

Definition 2.12 of the approximation space implies that the numerical method defined by equation (2.7)
is essentially a spectral Galerkin method, which are well-known to demonstrate exponential convergence for
sufficiently smooth solution functions. Theorem 2.24 provides a proof of this intuitive result. We emphasise
that the hypotheses of Theorem 2.24 are analogous to the hypotheses typically assumed by the discontinuous
Galerkin finite element community for hp finite elements (see, e.g., [29-31]).

We conclude this section by emphasising that, taken together, Theorems 2.23 and 2.24 establish that the
accuracy of our numerical algorithm is robust with respect to the number of open balls N for any family of
geometries satisfying the assumptions (A1)—(A3). Of course, in order to prove that the numerical method is
linear scaling in accuracy, we would have to prove in addition that for a fixed number of degrees of freedom per
sphere, the computational cost of solving the linear system obtained from the Galerkin discretisation (2.7) scales
as O(N). Numerical evidence (see Sect. 3 and also [34]) suggests that this is indeed the case. As mentioned
in the introduction however, the current article is concerned with numerical analysis. A detailed complexity
analysis of this numerical method is the subject of a second article [27].

e

1 lpax+1 1
Cl/,ofcmain exp ( —_— + > ’

2.5. Existing literature and limitations

Let us first establish our earlier claim that the boundary integral equations (2.2) is, essentially, an integral
equation of the second kind.

Lemma 2.25. Assume the setting of Section 2.1. The boundary integral equation (2.2) can be written as an
integral equation of the second kind.

Proof. Consider the BIE (2.2). Standard results on boundary integral operators (see, e.g., [49], Sect. 3.7) imply
that

1
DtNVY = 51 + K7,

where I: H=2 (9Q) — H~2 (99) is the identity operator.
The boundary integral equation (2.2) then implies that

47 Ko — K

_ 1 _
(DtNV)V:I/fHO Sk ) e = ot k, Ko "k,
Ko Ko Ko 2 2K Ko

Consequently, we obtain that

4 1 — 1 —
T o =V — RO = Fpery = (21— 20" ") 0, (2.11)
Ko + K 2 Ko+ K 2 Ko + K

This completes the proof. O

Lemma 2.25 suggests that we might appeal to the classical well-posedness analysis of second kind integral
equations in order to establish that the weak formulation (2.4) is well-posed. Broadly speaking, there are two
popular approaches in the literature to establishing the well-posedness of second kind integral equations.
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The traditional approach is based on recognising that the boundary integral operator K: L? (9§2) — L? (09)
is compact if Q is a C! domain (which is indeed the case for the current problem). It follows that the BIE (2.11)
can be viewed as an operator equation on L? (99) involving a Fredholm operator of index 0, and well-posedness
can be established by proving that the underlying operator is injective. This approach was first developed by
Fabes et al. [18]. In the general case when the domain Q~ is only Lipschitz, the operator K is no longer compact
on L? (0€2) but invertibility of the operator %I — :g;’z}C on L? (0€2) can still be established as proven by Gregory
Verchota in 1984 [54]. These results can then be extended to the Sobolev spaces H*® (02) (see, e.g., the work of
Johannes Elschner [16]).

The primary issue with the above approaches is the following: Both analyses establish the invertibility of
the underlying boundary integral operator indirectly, by showing that the operator is injective. Thus, we are
unable to obtain closed form expressions for the stability constants which means that we are unable to determine
whether or not these constants are independent of N.

A second, more recent approach due to Steinbach and Wendland [32,52] (see also the book of Sauter and
Schwab [49]) is based on variational techniques. This approach can be used to establish that the operator
i1 — K is both bounded below and a contraction on H z (9Q) with respect to the inner product induced
by the inverse single layer boundary operator V~!. This approach is based on the classical work of C. Neumann
from the early 20th century. Martin Costabel has published a fascinating article on the historical development
of C. Neumann’s work which also contains the core idea of the proof [13].

There are three fundamental issues with this variational approach. First, the lower bound constant for the
operator %I — ZEIZIC depends — amongst others — on the coercivity constant of the hypersingular boundary
operator, and it is a priori unclear how this coercivity constant behaves as the number of objects N is increased.
Second, the analysis takes place in the Sobolev space H B (092) equipped with the inner-product induced by the
inverse single layer boundary operator V~!, and this inner-product is completely non-local. Consequently, in
order to qualitatively compare the relative error for different values of N, it becomes necessary to introduce
norm equivalence constants and switch to the Hz2 (0€) norm. Unfortunately, these equivalence constants involve
the continuity constant of V, which increases as the number of objects N increases. Finally, given our choice
of approximation space, the Galerkin discretisation does not automatically inherit inf-sup stability from the
infinite-dimensional case.

In view of the preceding discussion, we felt it necessary to introduce a new well-posedness analysis for the weak
formulation (2.4) and the Galerkin discretisation (2.7). The details of our analysis are presented in Section 4 but
we remark briefly that we adopt an indirect approach and take advantage of the complementary decomposition
of the space H 3 (09Q) introduced in Lemma 2.13. We will show that this decomposition leads to a splitting of
the weak formulation and Galerkin discretisation which then allows us to obtain suitable continuity and inf-sup
constants that are indeed explicitly independent of the number of objects N.

3. NUMERICAL RESULTS

The goal of this section is to briefly provide numerical evidence in support of our main results Theorems 2.23
and 2.24. Our numerical experiments will therefore show that

— For a fixed number of degrees of freedom per sphere and geometries satisfying the assumptions (A1)—(A3),
the average error in the induced surface charge remains bounded as the number of open balls N in the
system is increased.

— For a fixed number of open balls NV in the system, the average error in the induced surface charge converges
exponentially as the number of degrees of freedom per sphere is increased.

In addition, in order to anticipate future work on computational aspects of the numerical algorithm, we also
provide numerical evidence indicating that for a fixed number of degrees of freedom per sphere and geometries
satisfying the assumptions (A1l)—(A3), the number of GMRES iterations required to solve the linear system
arising from the Galerkin discretisation (2.7) remains bounded as the number of open balls N in the system is



S78 M. HASSAN AND B. STAMM

L .
° B |
¢ [ . » |
’0"“‘.. -~ '."’..
Tegs X PRV N
nigi 2% o e sV,
, » .
AP TEE LI Potet, 2 0
° 0,850 0¢ sSot Pt ot o
OQOO O . .. ““! . ~
° (o) ® @ [ 3 “t
JJO.O ..

®

=

(B)

FIGURE 1. The geometric settings for both sets of numerical experiments. (A) Dielectric spheres
arranged on a three dimensional, regular cubic lattice with edge length 10. (B) Dielectric spheres
arranged on a three dimensional, regular cubic lattice with edge length 5.

increased. Since we use the fast multipole method (FMM) in order to compute matrix vector products, these
numerical results suggest that the computational cost of solving the underlying linear system scales as O(N).

We consider the following geometric setting: The external medium is assumed to be vacuum which has a
dielectric constant kg = 1. Two types of dielectric spheres are considered, one with radius 1, dielectric constant
10, and net negative free charge, and the other with radius 2, dielectric constant 5 and net positive free charge.
Moreover, in order to include the effect of the minimal inter-sphere separation distance, we consider two sets of
numerical experiments. The first involves the dielectric spheres arranged on a three dimensional, regular cubic
lattice with edge length 10 and the other involves a similar lattice with a smaller edge length of 5 as displayed
in Figures 1a and 1b, respectively. All numerical simulations were run using a relative tolerance of 1074,

Figures 2a and 2b display the average error in the induced surface charge as the number of dielectric spheres
N is increased for the two types of lattices. The reference solution in both cases was constructed by setting
the maximum degree of spherical harmonics in the approximation space on each sphere as /. = 20. The
approximate solutions were all constructed using #;,,x = 6.

Figures 3a and 3b display the average error in the induced surface charge as the maximum degree of spherical
harmonics £, in the approximation space on each sphere is increased. The number of dielectric spheres was
chosen as N = 215. Once again, the reference solution in both cases was constructed by setting the maximum
degree of spherical harmonics as f,,x = 20.

Finally, Figures 4a and 4b display the number of GMRES iterations required to solve the linear system arising
from the Galerkin discretisation of the integral equation (2.2) for the two types of lattices. The maximum degree
of spherical harmonics in the approximation space on each sphere was chosen as £,,x = 6.

It is readily seen that these numerical results are in agreement with the conclusions of our main results
Theorems 2.23 and 2.24. Furthermore, we observe that the average error and the number of GMRES iterations
required to solve the linear system both increase as the minimum distance between two balls decreases.
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FIGURE 2. Log-lin plot of the average error in the induced surface charge versus the number
of dielectric spheres N. These numerical results support the conclusions of Theorem 2.23. (A)
Results for the cubic lattice with edge length 10. (B) Results for the cubic lattice with edge
length 5.
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with edge length 10. (B) Results for the cubic lattice with edge length 5.
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FIGURE 4. The number of GMRES iterations required to solve the linear system arising from
the Galerkin discretisation of the integral equation (2.2). (A) Results for the cubic lattice with
edge length 10. (B) Results for the cubic lattice with edge length 5.

4. PROOFS

Assume the setting of Section 2.1. As mentioned in Section 2.5, we need to introduce a new, indirect analysis
in order to prove our main results Theorems 2.23 and 2.24. To this end, we begin by observing that the single
layer boundary operator V: H™ 2 (09) — H? (09) is a bijection. Therefore, the integral equation (2.2) can in
fact be reformulated in terms of an unknown surface electrostatic potential A := Vv € Hz (99).

Integral equation formulation for the electrostatic potential

Let oy € H~2 (8Q). Find A € H= (9Q) with the property that

Ko — R

AN =2 = VDIN( A) = %vof.

ko

Naturally, the integral equation (4.1) has a straightforward weak formulation.

Weak formulation of the integral equation (4.1)

Let o € H™2 (89) and let A: Hz (9Q) — H= (9Q) be the operator defined through Definition 2.9. Find

=N:E

(89) such that for all ¢ € H~= (99Q) it holds that

47
(0, AN) g, = P (0,V08) 9 -

(4.2)

The integral equation formulation (4.1) now leads to a corresponding Galerkin discretisation for an unknown
approximate surface electrostatic potential A\, € W max,

max
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Galerkin discretisation of the integral equation (4.1)

€ Wmax guch that for all ¢ € Whsax it holds that

max max

Let op € H™2 (99) and let £y € N. Find A

_Aw
L2(09) Ko

(@mx , AXgW) (@ngax Vo f) . (4.3)

L2(09)

We emphasise that for the purpose of applications, one is typically interested in calculating either the induced
surface charge v € H -3 (09) or the total electrostatic energy &, which itself can be obtained directly from the
induced surface charge v, and this is precisely why our main results Theorems 2.23 and 2.24 have been formulated
in terms of the induced surface charge v rather than the surface electrostatic potential A € H 3 (092). One may
therefore wonder why we need introduce the weak formulation (4.2) for the surface electrostatic potential A and
its Galerkin discretisation (4.3) at all.

The key difficulty in our analysis is that the continuity constant of the relevant boundary integral operator
and the discrete inf-sup constant both appear as pre-factors in the quasi-optimality bound and hence also
the error estimates appearing in Theorems 2.23 and 2.24. It therefore becomes essential to obtain both a
continuity constant and an inf-sup constant that is independent of the number of balls N in the N-body
problem. Unfortunately, we have been unable to obtain such N-independent continuity and stability constants
if we adopt a direct analysis of the weak formulation (2.4) for v and its Galerkin discretisation (2.7).

The weak formulation (4.2) and the Galerkin discretisation (4.3) have thus been introduced as analytical tools
that will aid our numerical analysis. As we will later show, the difficulties highlighted above can be avoided if we
analyse first the weak formulation (4.2) and its Galerkin discretisation (4.3) involving the exact and approximate
surface electrostatic potential and then obtain as a corollary, analogous results for the weak formulation (2.4)
and the Galerkin discretisation (2.7) and also proofs for Theorems 2.23 and 2.24.

We divide the remainder of this section into three parts. We first prove that the weak formulation (4.2) and
the Galerkin discretisation (4.3) are well-posed, and obtain a partial quasi-optimality result for the approximate
surface electrostatic potential. Next, we prove that the weak formulation (2.4) and the Galerkin discretisation
(2.7) are also well-posed, and obtain an approximation result for the induced surface charge. Finally, we provide
proofs for Theorems 2.23 and 2.24.

4.1. Well-posedness analysis for the surface electrostatic potential

4.1.1. The classical analysis of the infinite-dimensional problem and its limitations

The first step in the well-posedness analysis of the weak formulation (4.2) of the boundary integral equation
(4.1) is to prove the continuity of the underlying linear boundary integral operator A: H 2 (0Q) - H B (09)
defined through Definition 2.9.

Lemma 4.1. Let the constants ¢y and cx be defined as in Properties 1 and 3, respectively of Section 2.1, let
Il L2(80) denote the L? operator norm of the double layer boundary operator K : Hz (8Q) — Hz (99), and let
the constant C 4 be defined as

R — Ro 1 2 czquivC:glC
Cy:= 1—|—max‘ ‘ <7+ ||IC||L2(3Q)) (1+ maxr;) + ——=-
Ko 2 Cy

Then the linear operator A: Hz (92) — Hz (8Q) defined in Definition 2.9 satisfies

[AA]
AT

[Alop = sup <

0£NEH 2 (9Q)
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Proof. Let A € H= (9Q). Then it holds that

Ko

= - voex () < i+ s (25 |

R0

Let A, := "=\ Using Definition 2.15 of the ||| - [|| norm we obtain
[|IVDENALI® = [PoVDENAL|[72 96y + (DENVDENA, VDENA,) o, -

Let us first focus on the second term. Using standard results on boundary integral operators (see, e.g., [49],
Sects. 3.7, 3.8 and Thms. 3.5.3, 3.8.7), we obtain

(DENVDENA,., VDENA,) 5, = (V' VDENVDENA,, VDNA ),
= ((VDIN)* A VDENA,)
< || (WDIN)? A, |, [[VDENAL],,

< i ally-1 e [Ally—

2 3 .2

C-C C-Co . _ 2

< O 0[P < Y e | 2
Cy Ko

Next, we consider the first term. The Calderén identities (see, e.g., [49], Thm. 3.8.7) imply that

2 1 2
2
< (2 + ||K||L2(89)) Aellzz o)
L2(8Q)

1 2
< (5 + Wlaony ) max

1

K — Ko

2
2
| 2oy

Next, we observe that
IAIZ2(00) = PoAlIZ2(a0) + PG All72(00) = IPoAIl® + IBg All72 (a0,
< IPoA[|[? + mascr] | [Py Al[[* < (14 maxr;) [[[A]][.
We conclude that

Ko —

k k— ko 1 2 Cgl(ﬁcz,quiv
/\)’H §max’ ’ (§+HICHL2(SQ)) (1+maxrz)+T|||/\|||

(o o

Ro
The proof now follows. O

Remark 4.2. Consider the setting of Lemma 4.1. The continuity constant C'4 of the operator A as determined
in Lemma 4.1 depends on the operator norm of the double layer boundary operator K. Standard bounds for
this operator norm depend on the diameter of the domain Q™ (see, e.g., [19], Chap. 7 or [49], Chap. 3), which
implies that the continuity constant C 4 could potentially increase as the number of open balls N increases.

Notice that the dependence of the continuity constant C 4 on the operator norm |||/ ;2 a0y appears only when
evaluating the operator norm |[VDtN||12(9q). In principle, it is possible to refine the estimate for the operator
norm ||[VDtN||2(50) using the addition theorem for spherical harmonics and the so-called Multipole-to-Local
operators introduced by Greengard and Rokhlin [24]. Unfortunately, it turns out that for a completely arbitrary
geometry 0~ = UN Q. it is not possible to eliminate the dependence of the continuity constant C4 on the
number of open balls N. Indeed, an explicit counter-example can be constructed.

Obviously, this degradation of the continuity constant poses a serious problem if wish to obtain error estimates
independent of N. Fortunately, as we will now show, it is possible to circumvent this issue by taking advantage
of the particular structure of the BIEs (2.2) and (4.1).
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4.1.2. The new analysis of the infinite-dimensional problem

In principle, the next step in our analysis would be to prove that the weak formulation (4.2) is well-posed.
In view of Remark 4.2 however, we cannot obtain N-independent stability and continuity constants using a
straightforward analysis of the boundary integral operator 4, and we must therefore adopt a smarter, indirect
approach. To this end, we will appeal to the complementary decompositions of the spaces H 3 (0Q) and H -3 (09)
introduced in Lemma 2.13. This complementary decomposition, together with Remark 2.14, allows us to rewrite
the yveak formulation (4.2) in terms of trial and test functions that belong to the spaces C (9), H 2 (092), and
H—z (09).

Modified weak formulation of the integral equation (4.1)

Let o5 € H~= (09). Find functions ()\0,5\) € C(09) x Hz (09) such that for all test functions (c¢,5) €
C (89Q) x H~= (89) it holds that

Ko — K~ 4
(70, M) gy — <007VDtN ( 0 )\>> = — (00,Y0) g, (4.4)
Ko 90 Ko
o~ ~ Ro — Kz . 41 ~
<a, )\>SQ - <07VDtN ( - A) >GQ = (5. Vos)oa (4.5)

It is a simple exercise to prove that the modified weak formulation (4.4) and (4.5) is indeed equivalent to the
weak formulation (4.2).

Consider now equations (4.4) and (4.5). We observe that equation (4.5) involves only the unknown function
A e Hz (09). It is therefore clear that if equation (4.5) is uniquely solvable, then equation (4.4) is also uniquely
solvable, and hence the weak formulation (4.1) is well-posed. Following standard practice in functional analysis,
we prove unique solvability of equation (4.5) by establishing that the underlying reduced bilinear form is bounded
and satisfies the inf-sup condition.

Remark 4.3. In principle, one could use the same complementary decomposition to split the weak formula-
tion (2.4) for the induced surface charge v. In this case however, we do not obtain the useful “upper-triangular”
structure highlighted above, and consequently our subsequent analysis cannot be applied.

Definition 4.4. We define the “reduced” bilinear form a: H? (09) x H~2 (0Q) — R as the mapping with the
property that for all A € Hz (8Q) and all & € H~= (99) it holds that

@ (X, &) = <a—7 Z\>69 - <5, VDN (“OH; ”X) >69 .

We first prove that the reduced bilinear form a is bounded.

Lemma 4.5. Let the constant C ; be defined as

K — RgQ

Cj =1+ max

3
C}%Cequiv
: : 4.6
( = ) (4.6)

and let the bilinear form a: Hz (09) x H=2 (0Q) — R be defined as in Definition 4.4. Then for all \ € Hz (8)
and all & € H== (9Q) it holds that

Ko

a (%) I < CallAll ol
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Proof. Let the linear operator A: Hz (8Q) — Hz (8Q) be defined as A := P APE. Then A is the linear
operator associated with the reduced bilinear form a. Since [[|[P&A||| < [||A]|| for all X\ € H? (9Q), the proof
becomes identical to the first part of the proof of Lemma 4.1 with one minor modification. (I

Remark 4.6. Consider the setting of Lemma 4.5 and the continuity constant C'; of the modified boundary
integral operator A. We observe that the constant cx is bounded by one, and therefore the only non quantified
constant appearing in the expression of C; is the coercivity constant cy. A priori, it is not clear how this
coercivity constant depends on the geometrical setting of our problem including the number of open balls N
in our system. The next step in our analysis therefore, is to obtain a closed form expression for this coercivity
constant and to show in particular that it does not explicitly depend on N.

We first require the following lemma:
Lemma 4.7. There exist constants Cint, Cext > 0 that are independent of the number N of open balls such that
for all harmonic functions v € H* (Q7) and w € H' (%) it holds that
||’7R,’UHH,%(89) < cint[[VollL2(0-),
and

H’Y?\rwaH—% (99) < cext||Vwl| L2 (a+)-

Additionally, the constant ciny depends only on the radii {rj}j.vzl of the open balls while the constant Cext
depends on both the radii of the open balls as well as the minimum inter-sphere separation distance, i.e.,

min; je(1,....N} (|Xz = x| —ri — Tj)'
i#£j

Proof. The first bound is straightforward to prove. Indeed, let £°: H 2 (0) — H' (27) be defined as the
interior harmonic extension operator on 7. A direct calculation yields

) ~0, \o Vo (z)- VERA (z) da
volly-3 o) = sup w = sw & B
ozxeH? (00) ""HZ(00)  0AeHE (09) H3 (09)

IVEL M L2 @)

IN

Vol 20y sup T
0£NEH 2 (89) HZ(8Q)

€3N £ (-
S HVUHLQ(Q’) Sul:l) H)\H . ( )
0£NEH 2 (99) H?2(09)

int

< Cequiv[|E3¢ [lop | VY| L2,

where the N-independent norm equivalence constant cequiv arises due to the fact that by our convention,

Hz (99) is equipped with the new ||| - ||| given by Definition 2.15 rather than the Sobolev—Slobodeckij norm

I|- ||H% 62)° Since Q7 is simply the union of non-intersecting open balls, i.e., Q™ = Uf{:le, it is easy to see that
int

the operator norm ||£}}*||op depends only on the radii {r; }jvzl of the open balls {Q; }j\;l and is independent of
the number N of open balls. This completes the proof for the first bound.

In order to compute the second bound, we require more work. The essential idea is to mimic the proof for
the first bound but this requires us to first define an extension operator Eexternal: H 3 (0Q) — H* (Q) whose
operator norm is also independent of N. We proceed in four steps.
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Step 1. We first define a family of one-dimensional continuously differentiable cutoff functions. To this end,
let 7 > 0 and € > 0 be real numbers. We define the cubic polynomial p, .: R — R as

Vo € R: pr,e(x):els(2x3—3(2r+e)x2+6r(r+e)m—(r+e)2(2r—e)>.

Then for any r > 0 and € > 0 we define the cutoff function ¢, : R — [0, 1] as the mapping with the mapping
with the property that for all x € R it holds that

1 if <,
Ore(x) = ¢ Dre(x) if ze(rr+e,
0 if z>r+e

Let 7 > 0 and € > 0 be fixed. It can readily be verified that the cutoff function ¢, € C* (R), [[¢r.c| p®) = 1,
and furthermore that ||¢;. ||z ®) = 3,

Step 2. Let i € {I,...,N}. We define the (exterior) harmonic extension operator &%;: Hz (8Q;) —

H' (R3\ ;) as follows: leen any \; € Hz (8;), there exist coefficients [\;]7", £ € Ny, —¢ < m < £ such that
for all x € 99Q; it holds that

m={

v - 35 b (222)

=0 m=—

We therefore define

£=0 m=

for all x € R? such that |x —x;| > r;. The boundedness of this operator can be deduced from the well-posedness
and regularity results on the exterior Dirichlet problem for the Laplace equation.

Step 3. We now recall that we have by assumption that the minimum separation distance of the open
balls {Qz}fv:1 is uniformly bounded below with respect to N. Let € > 0 be a lower bound for this separation
distance and define € := §. Moreover, let once again i € {1,..., N}. We now define the local extension operator
E vomar: H? (8Q) — H' (1) as the mapping with the property that for all A; € H= (99;) and all x € QF it
holds that

(ggxternal)‘i) ( ) (gext ) (X) (b""hf (|X - X’L|) .
Intuitively, this local extension operator £’ . ., takes as input Dirichlet data on 89, constructs the exte-
rior harmonic extension according to equation (4.7), and then multiplies this extension with a smooth cut-off
function. The following properties of this local extension operator can easily be deduced:
Property 1: For all x € Q" it holds that (£L,.,.Mi) (%) < (E3N) ().

Property 2: For all x € QT such that [x — x;| > r; + €, it holds that (£l ... A;) (x) = 0. In other words,
the local extension operator £, . is zero outside a ball of radius r; + € centred at x;, i.e., the centre of the

open ball ;. This implies in particular that the local extension operator Eextemal is zero on all closed balls
Q;,j €{l,...,N} such that j # i.
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Property 3: For all x € Q7 such that [x —x;| < r;+¢, the gradient V(€L (., \i) (%) in cartesian coordinates
satisfies:

|Vx (geixternad)‘i) (X) | = ¢7"i7€(|x - Xi')VX (SQXt/\i) ( ) (ECXt ) (X) Vx(bmﬁ(lx - Xl|)‘
< |Vx(EN) (o) |+ [(E5500) () 61, (I — )|

= [Tateszin) 0 [+ o (s o0 |

Of course, we have not yet shown that the mapping €/ ... Hz (0Q;) — H' (Q) is bounded as claimed. In
order to show this, let us denote by B, 1 (x;) the open ball of radius r; + € with centre at x;. Then combining
properties 1 and 3 yields that

; Ea Ai (x) 2 :
gt )\z 2 _ / | external 7\t dx +/ vx gt )\7, x 2 dx
H external |‘H1(Q+) o+ 1+ |X|2 o+ | ( external ) ( ) |

9
(1+22>/ |gi)";-t[)\z (X)|2dx+2/ ]V (56Xt)\)( )’2 dx
€ QFNBy, 4e(x:) QFNBy, e (x:)

9
<max< 2,1 + €SN
HY QB 4e(xi))

In order to simplify the final expression we first use equation (4.7) to simplify the L? (QJr N B, 1e (%;) ) norm.
For reasons that will subsequently become clear, we adopt the convention that the space H 3 (09);) is equipped

with the norm ||| - |||H Yo, defined through Definition 2.19. A direct calculation yields
1 0 14
ext y 112 < = ( — )
||SZ,H>\'L||L2 (Q+ﬂBr7-i+5(xi)) — 3 (7’1 + 6 T % Z
o L
= (et et )z:z
=0 m=—4
1 1
< + 1 2 2
e ) NI, -

Next, we use the fact that the local extension 56’“)\ is a harmonic function so that Green’s identity applies
in the domain Q% N B, (x;). Simple calculus then yields that

0o l f—i—l Qi i ) r 20+2
||V5ext)\ HQ m 7“1+€ i ) ( ) )
L2 (2+NBr 1 (x) e 0m=—t =0 m—— ”Le rite
1 1 I
2 ma2 i
23 (41 () ( (%) )
=0 m=—¢
o 4 2041 2041
2 ma2 (ri+e)” " =1
=T (€ +1) (N7 :

This last expression can be further simplified by observing that for all £ > 0 it holds that

2041 20 24 2/
e ot () -1 s (eg) 4 (1xg) 1 (145)
7 '3 — k2 _ i i £ <7 i
20+1 20+1 20+1 — 2 20+1
ri(ri+e) ri(1+5) (1) )
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We conclude that

11
xt 2 2
IVESEN: HLZ(Q+OB +€(x g € E g (L+1)( ) < 26max{m7r.2} [[[A |||H2 59.)"

£=0 m=—¢ v

Consequently, we can define a constant C,, . > 0 depending only on € and r; as

11 9 €
Cr,c ' =€maxq —, — emaxs r; +er;+ —,2p, (4.8)
T T 3

and we obtain that

||gexternal>‘ ||H1(Q+) < max{Z 1+ |gex 1”2

R }
< max + 550 Crie

2€

(2+NBy4e(x))

NI 5

It follows that the local extension operator & Hz (8€;) — H' (Q1) is indeed bounded.

external *

Step 4. We are now ready to define the extension operator Eexternal: H 3 (0Q) — H' (7). Indeed, given
A€ Hz (09) and denoting \; := A|aq, for each i € {1,..., N}, we define:

N
Eexternal (A) = Z ggxternal)‘i'

i=1

Property 2 of the local extension operators & i = 1,...,N now yields that v (5extema1 ()\)) =\

external’
Moreover, from the bound (4.9) we see that

N
9
9 2
€external (V) |31 (g+) < max {2, 1+ 62} jmax Cr.c Z; 12l 3 5,y

1A%

9
:max{2,1+2} max_C,, .
€ | i=1,.,N

Thus, the mapping Eexternal: H 3 (09) — H'(QF) is indeed a bounded extension operator with operator
norm 0
[Eosrmallor = max {214 5} e, G

i=1,...,

Notice that the operator norm is independent of the number N of open balls and depends only the radii
of the open balls {Q; } _; and the minimal inter-sphere separation distance e. Furthermore, it follows from
equation (4.8) that max;—1_ N Cp, . = O (€) as e — 0. Consequently, we obtain that ||Eexternall|pp = O(1) as
e — 0.

Using the extension operator Eexternal We have just defined, we can mimic the calculations performed in the
beginning of this proof in order to obtain the second, required bound:

”'VJ—CWHH—%((QQ) < Cequiv|€external [lop || Vwl| L2 (o+).

Here, the N-independent norm equivalence constant cequiv arises once again due to the fact that the canonical

dual norm || - ||H,% o%) is defined with respect to the Sobolev—Slobodeckij norm || - ||H% o) rather than the new

|H : ||| given by Definition 2.15. Deﬁning Cint ‘= chuiv”g’}-?t”OP and Cext = chuiv”ontcrnaI”OP thus Completes the
proof. O
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We can now deduce a lower bound for the coercivity constant ¢y of the single layer boundary operator.

Lemma 4.8. Let the constants ¢y > 0 and cexy > 0 be defined as in Lemma 4.7 and let ¢y > 0 denote the
coercivity constant of the single layer boundary operator V: H? (09) — H: (09)). Then it holds that

< 1 . { 1 1 }
Cy = — 1Iin y .
2 012nt ngt

Proof. Let 0 € H™ (8(2) and let u = So € H' (Q~ U Q™). It follows from the jump properties of the single
layer potential operator that

(0, Vo)aq = /Qi |V (x) |* do + /Q+ 'V () |? da.

Lemma 4.7 therefore yields that

v Z 5
(0,V7)00 = ||7N ||H_§(OQ)+ gxt”%\f HH‘E(@Q)
1 1
> mi L 2 2
_mln{c?nt,cht} <||7N HH_§(89)+|‘7N || -1 aﬂ))
= { ; 1 }<1” ” )
mins ——, 5— U= -1
- Ci2nt: ngt ’VN ,VN (8Q)

[\

1 (1 1 ,
= gming 5=, 5o 3
cint Cext (89)

O

Remark 4.9. Consider the settings of Lemmas 4.7 and 4.8. Two facts can be deduced from the proofs of
these results First, that the coer01v1ty constant cy of the single layer boundary operator depends only on the
radii {7‘]} ., of the open balls {€; } _, and the minimal inter-sphere separation distance. As a consequence,
the continuity constant C 7 of the reduced bilinear form a (see Lem. 4.5) depends only on the radii of the
open balls, the minimal inter-sphere separation distance, and the dielectric constants {x; };Vzl Second, we have
also obtained significant insight into the behaviour of the coercivity constant ¢y for small minimal inter-sphere
separation distance. Indeed, let € := min; jeq1,... Ny (|xl — x| —r;i— rj). Then ¢y = O (¢) for € — 0. This result
i#]
implies that the continuity constant C ; grows with rate at most O (ﬁ) as € — 0.

Now that we have analysed the continuity constant C; of the reduced bilinear form a: Hz (09) x

H 2 (09Q) — R in detail, the next step in our analysis is to prove that this bilinear form satisfies the inf-
sup condition.

Lemma 4.10. Let the bilinear form a: H= (02) x H=2 (9Q) — R be defined as in Definition 4.4. Then there
exists a constant (7 > 0 that depends only on the function k and the dielectric constant ko > 0 of the external
medium such that

(i) It holds that

2 (47)]
inf sup L > 37> 0; (Bounded Below)
AR PP T TR
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(i) For all 0 # & € H2 (8Q) it holds that

sup a (A &)‘ > 0. (Dense Range)
O£ H 3 (09)

Proof. The proof relies on the fact that the Dirichlet-to-Neumann map DtN: Hz (9Q) — H~z (9Q) is an

isomorphism. We first prove Property (i). To this end, let \e H3 (09) be arbitrary. We decompose \ as the
sum of two functions as follows:

A=Ap + A

Here, A\, € H? (99) is a functlon equal to A on all spheres 99, i € {1,..., N} such that x; — ko > 0 and
zero otherwise. Similarly, N_ € H: (09) is a function equal to X on all spheres 0Q;, i € {1,..., N} such that
ki — Ko < 0 and zero otherwise. We recall that we have assumed that x # k¢ as mentioned in Remark 2.5.

We now define a corresponding test function & € H?2 (09Q) by setting

5= 2T B0peNR, - BTN

Ko Ko

For notational convenience, we define sets of indices Ny C Nand N_ C Nsuch thati € Ny <= k;—ko >0
and 1 € N_ <= K; — kg < 0. Moreover, for all j =1,..., N we define

SV X on 08,
77710  otherwise,

. o on 09,
o; =
J 0 otherwise.

It follows that the reduced bilinear form a satisfies

(Y & kj — kKo 2 Ko — Kj 2, /5 K — Ko~
a(\o)= 2012 + i <U,VDtN( >\>> )
(A3) = 20 IR+ 30 SRR + N

K
JEN, JEN_ 0

=J

Note that due to our choice of test function &, the coefficients of all terms in the above two sums are positive.
Therefore, let us focus on analysing the term J. Using the decomposition we have introduced, we obtain that

J<3,VDtN(““°X>> <DtN< —Fox ) VDtN< “°X+>>
ko a0 ko ko a0
- <DtN (” - KOX_> VDN (” - “OX_>> .
Ko R0 90
Using the Calderon identities (see, e.g., [49], Thm. 3.8.7), we further obtain that
- <DtN ( — oy ) VDN ( “°X>> — <DtN (” — KJOX) , (“ — ”°X>>
ko ko a0 ko ko 90
() (5
ko ko a0
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The non-negativity of the hypersingular operator W: H2 (092) — H-z (09) (see Property 2 of Sect. 2.1)
thus implies that

sz - (ow (g ) (B )y ooy (B ) IR
Ko ko o0 JEN_

Consequently, we obtain that

2
~ (T A Kj — Ko Ko — Kj Ko — K ~
(15)2 ¥ BRI T ORI R - T () iR

jENy jEN- JEN-
Ki — Kg, Ki Kj
= ]THW”'?‘ Pt [V
j€N+ 0 jeN* 0
Zmin{min Ko f%fw} A2
JENL Ko JEN_- Ko Ko

Furthermore, using Remark 2.18 we obtain that the norm of the test function & is given by

I *
(el —

Ii—/ﬁo/\ R — Ko
—H! |

Ko

< max |SR3|
Ko
We therefore define the constant 3; > 0 as

min < min.; Ki7RO  min Kj ko—Rj
JEN 4 ko 7 JEN_ ko Ko
Bi:= . (4.10)

. Kj—Ro
max]:LMN o

We then obtain that

i (%.2)
ini; sup ——— > 7,
SERHE 00 0 gt oey I TG

which completes the proof of Property (i).
_ Let us now turn to the proof of Property (ii). Let 0 # 7 € H~2 (89) be arbitrary and let NtD: H~2 (9Q) —
H2 (09) be the inverse of the Dirichlet-to-Neumann map. Using the decomposition and notation developed

above, it is possible to define a corresponding function Ne i3 (09) as

o= NtD& NtD&
Z/-c]—no 95— Z,{]_HO gj-

JEN4 JEN_

With this choice of X, we immediately obtain that

g=Y "Ny - Y B OpeNd,.

K K
JEN4 0 JEN_ 0
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Therefore, a similar calculation to the one used to prove Property (i) reveals that

’Zz (X,a)‘ > min { min 2~ KO, min I{]M} |||X|H2
JENL R0 JEN_ Kq Ko

> 04 (1B

. Kj—ko
max;—1i,..,N

Ko

We conclude that for all 0 # & € H~= (99Q) it holds that
sup  |a (5\,&) | > 0.
0£NEH 2 (90)
This completes the proof. O

An immediate consequence of Lemma 4.10 is that both the modified weak formulation (4.4) and (4.5) and
the weak formulation (4.2) are well-posed.

4.1.8. The new analysis of the discrete problem

Our next goal is to prove that the Galerkin discretisation (4.3) is also well-posed with a stability constant
that is independent of the number of open balls V. Similar to the infinite-dimensional case, we adopt an indirect
approach, and reformulate equation (4.3) as a modified Galerkin discretisation using the projection operators
Py and P introduced through Lemma 2.13. We first define the relevant approximation space.

Definition 4.11 (Reduced global approximation space). Let £,.x € N. We define the finite-dimensional Hilbert
space Wime c Hz (8Q) as the set

Wi = {u € W (00) : Pou =0},

equipped with the (-, ) ¢m., inner product.

Remark 4.12. Using the fact that the spherical harmonics functions are smooth, we can immediately infer
. . . . S L .
that the finite-dimensional Hilbert spaces Wgm» C Whmex ¢ Hz (9Q) also satisfy

Wems € Whoes  H7%(09)  and  YAg., € Wom™: [ = [ eI

max

Note that if one wishes to view Wtmex and W, as subspaces of H™ 2 (09), then the definition of the
equipped norms would have to be modified accordingly.

Modified Galerkin discretisation of the integral equation (4.1)

Let oy € H~2 (9Q). Find functions (Ao, Ar,,..) € C (9Q) x W= such that for all test functions (o9, 0y, ) €
C (89) x W= it holds that
Ko — K 47
70, A — (o ,VDtN( A m)) = " (00, Vo : 411
( 0 0)L2(8Q) < 0 Ko l L2(o0) o ( 0 f)Lz(aﬂ) ( )
Ko — K 47
A - DtN A = — . 4.12
(b Zmax>L2(aQ) <U€maxv v ( o me)> R (Tt VUf)L2(BQ) ( )

It is a simple exercise to prove that the modified Galerkin discretisation (4.11) and (4.12) is indeed equivalent
to the Galerkin discretisation (4.3).
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The structure of the Galerkin discretisation (4.11) and (4.12) is very similar to the structure of the infinite-
dimensional modified weak formulation (4.4) and (4.5). Indeed, we observe once again that equation (4.12)
involves only the unknown function A, _, € W(fm‘”‘. It is therefore clear that if equation (4.12) is uniquely
solvable, then equation (4.11) is also uniquely solvable, and hence the Galerkin discretisation (4.3) is well-
posed. Moreover, thanks to the analysis carried out for the infinite-dimensional equation (4.5), well-posedness
of the finite-dimensional equation (4.12) follows almost immediately. Indeed, we have the following result.

Lemma 4.13. Let the bilinear form a: H= (092) x H-= (0Q2) — R be defined as in Definition 4.4, and let the
constant 3 ;3 > 0 be defined through equation (4.10) as in the proof of Lemma 4.10. Then it holds that

A
inf sup 1@ Mo i) | - >B;>0. (Discrete inf-sup Condition)
0E N €W 02, etmax |[[ A [ 1020l

Proof. The proof uses the fact that the Dirichlet-to-Neumann operator DtN: W(f‘“a" — Wg ™2 ig an isomorphism.
Indeed, consider \; € Wgm (9€);) given by

Lnax m=+L
-3 Y wor ()
=1 m=—¢ [x =%l
Then the function DtN); € Wé‘““"‘ is given by
Lnax M= +€ %
=1 m=—¢ J |X el

Consequently given any arbitrary function NS nga" c H= (09), we may pick as the test function o €
Wime c H~ z (09)) given by

. K=K

DtNA, — ~PODeNA_,

Ko ko

where we have used the decomposition 2= ’)\\+ + A_ introduced in the proof of Lemma 4.10. The remainder
of the proof is now identical to the proof of Lemma 4.10 and yields the discrete inf-sup constant 3 ; defined
through equation (4.10). O

Lemma 4.13 now has several important consequences:

— Both the modified Galerkin discretisation (4.11) and (4.12) and the Galerkin discretisation (4.3) are well-
posed.

— For every choice of the approximation parameter ,,x € N, the finite-dimensional solution to the Galerkin
discretisation (4.3) satisfies a standard quasi-optimality result.

— Since the discrete inf-sup constant 3 ; is independent of the approximation space, we obtain stability and
convergence to the exact solution of the approximate solutions as the approximation parameter £, — 0.

All of the above results can be proven using text-book functional analysis techniques. We state one particular
quasi-optimality result concerning solutions to the finite-dimensional equation (4.12) which will be of use in the
next subsection.

Lemma 4.14 (Partial quasi-optimality). Let C ; > 0 be the continuity constant defined through equation (4.6)
in Lemma 4.5, let Bz > 0 be the inf-sup constant defined through equation (4.10) in Lemma 4.10, let oy €

=3 (89), let lax €N, let Ag,.. € WE be the unique solution to the finite-dimensional equation (4.12) with

max
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right hand side given by oy, and let Ae Hz (09) be the unique solution to infinite-dimensional equation (4.5)
with right hand side given by of. Then it holds that

- c:\ .
A = A ]Il < (1+[;}) inf |15 — ] (4.13)
Ppe

A Wén]'dx
Proof. The proof is also text-book functional analysis. O

Notice that thus far we have only proved well-posedness of the infinite-dimensional weak formulation (4.2)
and the Galerkin discretisation (4.3) involving the surface electrostatic potential. However, the main results in
Section 2 have been formulated for the induced surface charge. Therefore, the next step in our analysis will be to
transfer our existing results to the infinite-dimensional weak formulation (2.4) and the Galerkin discretisation
(2.7) involving the exact and approximate induced surface charge.

4.2. Well-posedness analysis for the induced surface charge

As the astute reader may already have realised, the well-posedness analysis for the infinite-dimensional weak
formulation (2.4) and the Galerkin discretisation (2.7) is exceedingly simple because the underlying boundary
integral operator is simply A*, i.e., the adjoint of the boundary integral operator A, which has already been
completely analysed in both the infinite-dimensional and finite dimensional setting. To facilitate the subsequent
exposition, we introduce some additional notation.

Definition 4.15 (Finite-dimensional projection operators). Let fy,.x € N. We define the projection operator
1

Py« H2 (99)) — Wimex ag the mapping with the property that for any 1 € Hz (92), P, is the unique

element of WW*max satisfying

(qbémax’ ]P)Zmax ¢)L2(SQ) = <¢Zmax7 ,(/)>89 v¢emax € Wemax’

Moreover, we define the projection operator Q__ : H —2 (0Q) — Whmax as the mapping with the property

max

that for any o € H™2 (09), Qq,... 0 is the unique element of W*max satisfying

(leax g, (bemax)Lz(aQ) = <O’, ¢gmax>39 V¢Zmax c ernax .

Remark 4.16. Consider the setting of Definition 4.15. It is possible to show that the projection operators
Py,.. and Qq, .. are stable, i.e., for all » € Hz (8Q) and all ¢ € H~= (99) it holds that

max max

IPra Wl < [l[#l] - and | Qe lll™ < llof]]*
We now have the following simple result.

Theorem 4.17 (Infinite-dimensional well-posedness). The infinite-dimensional weak formulation (2.4) of the
boundary integral equation (2.2) is well-posed.

Proof. The well-posedness of the infinite-dimensional weak formulation (4.2) implies that the boundary integral
operator A: Hz (092) — Hz (09) defined through Definition 2.9 is a continuous bijection. Consequently the
adjoint operator A*: H~2 (0Q) — H~= (%) is also a continuous bijection. d

A similar result holds for the Galerkin discretisation of the integral equation (2.2) for the induced sur-
face charge.

Theorem 4.18 (Finite-dimensional well-posedness). The finite-dimensional Galerkin discretisation (2.7) of the
weak formulation (2.4) is well-posed.
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Proof. Let Py, : H2 (9Q) — W and Qy H~2 (9Q) — Whmsx denote the projection operators defined
through Definition 4.15. The well-posedness of the finite-dimensional Galerkin discretisation (4.3) implies that
the boundary integral operator P, AP, : Whmax — T¥fmax is a continuous bijection. Consequently, the
adjoint operator Qg A*Qy

max *

Wﬁmax — Whmax is also a continuous bijection. (I

max *

We conclude this subsection by stating a first approximation result for the solution v, € Wtmax to the
Galerkin discretisation (2.7).

Theorem 4.19 (First approximability result). Let Emax €N, let Q. : H 2 (0Q) — Wi denote the projec-
tion operator defined through Definition /.15, let @em =1 —Qy,,,. where I is the identity map on H~2 (0,
let C; > 0 be the continuity constant defined through equatzon (4.6) m Lemma 4.5, let ﬂA > 0 be the inf-sup
constant defined through equation (4.10) in Lemma 4.10, let o5 € H™ 3 (09), let v € H2 (8Q) be the unique
solution to infinite-dimensional weak formulation (2.4) with right hand side given by oy and let vy, € Whmax

be the unique solution to the finite-dimensional Galerkin discretisation (2.7) with right hand side given by oy.
Then it holds that

max

(e

min

" <

+ ek

v —

Cinax

) . (4.14)

Proof. Let A € H? (8Q) be the solution of equation (4.5) in the modified weak formulation. It is straightforward
to show that

V=

- 4
"DINA+ — o). (4.15)
Ko Ko
Next, let A be the integral operator defined through Definition 2.9, let :\\gmax € Whmax be the solution to the
Galerkin discretisation (4.3), and let Py, : Hz (9€2) — Wtax denote the projection operator defined through

Definition 4.15. We then define the mappings
Vewas = Plaa V Qb Abipare = Pl AP and - A7 o= QAT Qs

€ Whmax We first claim that v,

max

and we define the function vy, . =V satisfies the equation

mmx Lmax max

4
At Ve = Vewan 0 - (4.16)
0

Indeed, since vy, satisfies the Galerkin discretisation (2.7) we obviously have

max

4
Ay, 7@&"% which implies that Verae Al i

Limax £max max ¥ YWinax Vemax - Lrmax Uf .

Ko

Using the fact that Vp, A} = Ag . Ve vields

max max Lrmax

4m
— — * —
Aémax ,(/Jemax - Aémax Vemax Vzmax - Vémax Aémax Vemax - ?Ovémax Uf7

which gives the intermediary result.
We now consider again the Galerkin discretisation (2.7). Using the definition of )y, and the fact that
Qy,,.. DtN = DtNP,__ we obtain that

max

Ko — R 47 Ko — R
Vo = Qo DtNVg, + —Qp, 07 =
Ro Ko Ro

4
DNy, + = Qr,...0- (4.17)
0
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Let Pg: H? (09) — H2 (09) be the projection operator defined through Lemma 2.13. Subtracting equa-
tion (4.17) from equation (4.15) then gives

*

Ro — R

N . Ko—K 4
v = vyl :H( DINA — 20 Dthmﬁﬁ—O(aff@zmgf)

/‘@0

* 47 n *
"+ 2okl
~ 4 *

“max

=H1“°

*

K
< max

: ‘“\|||X—Péwmxm + fH!@e

(4.18)

max ’

Let A, € WOK“““‘ denote the solution to equation (4.12) of the modified Galerkin discretisation. The first
term in the bound (4.18) can then be written as

1A = By eIl < A e = P Pt 1]+ A = Al (4.19)

The first term in Inequality (4.19) can be simplified as follows: We first define the mapping A/mx CWme
Wim as Ag o = Pg Ay, P&, Thus, .Agmx is the operator associated with the Galerkin discretisation of the

“reduced” blhnear form defined through Definition 4.4. We therefore obtain from Lemma 4.13 that
1, ~
1A e = o Pt 1| = [ AL Al M = Po ) ||| < EHIAeW (M = Po Wt |||

In order to simplify this last bound, we first use equation (4.16), the definitions of the operators .Agmx and
Ag,..... together with a simple calculation to deduce that

~ 4m
Aty Po Ve = Py Al Po Ve = *Po Voot = —Po P, V Q0,00
0
A similar calculation using the definition of A, (see Eq. (4.12)) yields
- 4ar
Aémax Lmax — 7]P>S_Pemaxvo.f'

We can therefore deduce that

1. ~
A s = PG Wt Il < 3 AN — P %t0ar) 0Pl VQ2,..0f) ’ H
A

Since DtN: Hz (99Q) — H~2 () is an isomorphism and thus invertible, we can define ®,
Dthle:naxof. We then obtain

max

47
H‘P&Pemxv(@zmx H’ ko H
A

Pr, P3VOE,00)|| < =5 |[pE VDN, ||

HOﬁA “06,4

3 3
AT C2Coqui 4T CECoqui
A 1@ ll] = —= 22 |Q 0
koBz /cv koBz /v
where the first step in the second line follows from the arguments used in the proof of Lemma 4.1.
In order to simplify the second term in the Inequality (4.19) we use the quasi-optimality result Lemma 4.14:

<

. ci\ .
1A= Al (14 53) me R vl
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Using again the fact that DtN: Hz (9Q) — H~2 (9Q) is invertible, we deduce from equation (4.15) that

A il

DtN"'Qpv — A N 'Qy oy
Ko — K Ko — R Ko

Since the Dirichlet-to-Neumann mapping is bijective on WO"“‘", we can therefore write

~ 47
inf  |[|A = || = inf ‘ DtN~! Q¢ (yffaf) thNflaom
Ewé/max DtN—lo.Oewé’«max Ko — K
K
= inf ‘ 0 DtN! (QO (V — —Uf> — 0'0) ‘ H
acoewgmax Ko — R
1 4
< inf ’Qo (1/ - —af) — 09
min K—KQ UOEW(fmax Ko
Ko

In the above infimum, we may pick oo = Q3 Qy, .. (u — %af) and use the triangle inequality to obtain

~ *
inf [[|A — ]| <
’¢)e WO max

ot

+——— [t

min | £=5e

m, 1x max

min ‘

Using the above calculations, we can finally bound the original Inequality (4.18) as

max ”0_“‘ . *
K
vl < — 5y (14 G2 ([ letuo [+ otes[)
min “—:“
A 1 Ko — K| CicCequiv
A [
Using the fact that max ”“ s

FIC Cequiv
S < < C we therefore obtain

max “‘;;"‘ " "
M= vl < =12 (14 Z2) (J[Jodo ||+ 0t ) + (1 + 52) ll@h ol
mln‘ =
max K;"“ Cx - N ”
< —2 (10 54) (et + Ellete ).
min 0 ko
Ko
as claimed.

4.3. Proofs of the main results
We begin with the proof of Theorem 2.23, which involves a priori error estimates and convergence rates.
Proof of Theorem 2.23. Consider the setting of Theorem 2.23. We first observe that for all s > 0, o0y € H* (0Q)
implies that v € H® (092) (see, e.g., [3], Sect. 9.1.4).
Next, let j € {1,...,N} and let v;, o5 ; € H® (052;) be defined as v; := v|gq, and oy ; := 0flaq,. It follows
that there exist coefficients [v;]}", [of,;]7", £ € No, —¢ < m < +{ such that for all x € 99, it holds that
oo m=-+~

Z Z V|V <z—2|)’ and of;(x ZZ ; orilT <|XXj )

=0 m——2¢ X = x|



N-BODY DIELECTRIC SPHERES PROBLEM S97

Using Definition 2.15 of the ||| - |||* norm and Definition 4.15 of the projection operator @j‘max we obtain that
%2 N 0o m=-+~ / —1
my2
et =2 X % () (IR
J=1  l=lmax+lm=—L 7
and
9 N o m=-+¢ / —1
llebuosll* <30 52 5 ()t
J=1 A=lpax+1m=—L J
Using Theorem 4.19, the definition of the ||| - [||z+(aq) from equation (2.10) and standard arguments from

the error analysis of spectral methods then yields that

5 O\ 5t3
(14 50) (222 )™ (Il + 200 )

The convergence rates for the total electrostatic energy follow by observing that the Cauchy—Schwarz inequal-
ity yields

K—Ko
Ko

max
<
min

max|H

v = v

K—Ko
Ko

€y (V) = Eop V) | = (¥ = Vtros VO ) oq < IV = ven IVl
]

Proof of Theorem 2.24. Consider the setting of Theorem 2.24. We first observe that since oy € C™ (01), the
regularity theory for boundary integral equations (see, e.g., [3], Sect. 9.1.4) implies that v € C* (992). Next, let
us focus on obtaining an expression for the norm of the induced surface charge v. To this end, let j € {1,..., N}
and let v; € C°° (9€;) be defined as v; := v|gq, . It follows that there exist coefficients [v;]}*, £ € Ng, —£ < m </
such that for all x € 0€2; it holds that

=35 blrar (=)

=0 m=—1¢

Let Eqv; € O (STJ) be the harmonic extension of v; inside the ball Q;. Then for all z € Q; it holds that

e = 3 5 bl (B o (222). (420

=0 m=—¢

Using equation (4.20), it is straightforward to verify that for all integers k& € Ny it holds that

0%k (Envy) (x
1085 oy = [ (Era) 00 253 0 (4.21)
o0 n

2
where Q& : H™2 (9Q) — H~z (09) is the projection operator defined through Lemma 2.13 and n: o0 — R3
is the unit outward-pointing normal vector. On the other hand, we have by assumption that £xv; is analytic

on ;. Therefore, there exists some constant C,,; > 1 that depends on the function v; such that for all k € Ny
and x € 99Q); it holds that

o (EH Vj) (%)

< CkF1p,
3nk — TVj
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Defining the constant C, := max; C,,, we therefore obtain from equation (4.21) that
1
|||Qéyj|||§{k(89j) < 47T7‘]2»03f+2 (2k)!, so that N|||@él/|||?{k(am <dAr mjaxr?C’ng (2k)!,

A similar calculation which uses the fact that the harmonic extension of o; is analytic on Q- yields that
there exist some constant Cy;, depending on o such that

1
N|\|Qé"f|\|§1k(am < dm mjaxrjz'cglfﬁ (2k)!.

1

The remainder of the proof is standard. Indeed, we define C,, 5, := max {C’V, (8—”> o

Ko af

} and we use the

error estimate from Theorem 2.23 to obtain

1 max k=ko C B 2 8 ) 1+2k
Iy = v |17 < 87 max 2 — "L (1 + ) (CZ’”2 (2k)! + -2+ (2k)!) ( Xy )
N J min | £=ro 6 A Ko ‘emax +1
Ko
max | £=f0 C\2 N\ 142k
< 8w rnaxrjzim2 <1 + ) (rrmxr]) Cflfffz (2k)!.
J min m;:o ﬁ A Emax +1 ’

Stirling’s formula then yields that

maxr; L2k ok maxr; \' T _ okt 1
o C +2 (2k)' < Eij C?k+26 2k+1 (2]{3) +3 )
/ >

max + 1 V7Uf max + 1 V,Uf

In particular, for ¢,,.x sufficiently large, we can choose o € [
then see that

1 1 _ lmaxtl
C0sy 00, such that k = « oy € N. We

142k
maxr; 7 otz okt (k)2 = (2) T k2 2t g2kt
gmax +1 ¥os h k ¥as

= a1+2k03f;;26—2k+122k+%k—%

2 k

_ 0 V2 (1 ace L
Vk ©ose2
\/a 02 \/56—2k+1

lomaxtl D07
max T'j

gmax 1
v/2max er’iof exp <20¢jL + 1>

maxrs;

1 lpax +1
< \/Qmaxerigf exp (— bmax 1 + 1) .

2C, 5, maxr;

IN

IN

We conclude that

1 C; 1 ¢ +1 1
L . < /8 2(9 ) 1 A _ Zmax @ 7oy T )
\/N|||u Vi ||I" < /87 maxr? (2maxr;) ( + ﬂA)QXP( iCyy, maxr, +2>

This completes the proof for the exponential convergence of the approximate induced surface charge. The
proof for the exponential convergence of the approximate total electrostatic energy is essentially identical. [

K—Ko

max

ENE

CV,O'f i ke
min TOO
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5. CONCLUSION AND FUTURE WORK

In this work, we presented a detailed numerical analysis of an integral equation formulation of the second
kind for the induced surface charges resulting on a large number of dielectric spheres of varying radii and
dielectric constants, embedded in a homogenous dielectric medium and undergoing mutual polarisation. We
derived a priori error estimates and convergence rates that do not have any explicit dependence on the number
of dielectric spheres N in the system. In order to achieve this, we introduced a new analysis of second kind
boundary integral equations posed on spherical domains.

In order to complete a scalability analysis of the numerical algorithm under consideration, it is also necessary
to analyse computational aspects of the algorithm such as the conditioning of the linear system that arises from
the Galerkin discretisation (2.7). This topic, as well as related computational considerations, is the subject of
the contribution [27].

From the point of view of further numerical analysis, we emphasise that the differential operator which
generated all layer potentials and boundary operators in the current work was the Laplace operator. Future
theoretical work could therefore involve the analysis of N-body systems involving more complicated differential
operators. Such operators arise, for instance, in the study of wave propagation in non-homogenous media or
electrostatic interactions between dielectric spheres in an ionic solvent.

APPENDIX A. JUSTIFICATION FOR THE EQUIVALENCE OF THE ||| - ||| NORM

9

Notation. We write H := {u eH(Q):yueHz (89)} .

Intuitively, H consists of harmonic functions in H* (€27) such that the interior Dirichlet trace of these functions
is of average zero. Consequently, it holds that H is a Hilbert space with respect to the H' semi-norm. Henceforth,
we will equip the space H with the inner product given by

N
(u,v)y = Z /Q Vu (x) - Vo (x) dx,

and we observe that the associated norm || -

i is equivalent to the || - || g1(q-) norm defined in Section 2.

Lemma A.1. The interior Dirichlet trace mapping v~ : H— Hz (09) and the interior Neumann trace operator
Yy H— H~= (09Q) are both bijective, continuous linear operators.

Proof. The proof follows from the well-posedness of the interior Dirichlet and Neumann problems for the Laplace
equation on Lipschitz domains. O

Notation. We define £: Hz (99) — H as the inverse of the interior Dirichlet trace operator v~ : H — Hz (%).

Corollary A.2. Lemma A.1 implies in particular that the interior trace operator v~ : H — H: (092) is an

isomorphism. It follows that we can define a new norm || - ”ﬁ%(aﬂ) on the space Hz (8Q) that is equivalent to

the Sobolev-Slobodeckij norm defined in Section 2 by setting for all X € H? (092)

1A

Lemma A.1 also yields the following corollary.

Corollary A.3. The Dirichlet-to-Neumann map DtN: H2 (9Q) — H~= (0Q) is a bijective operator.
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Remark A.4. The Dirichlet-to-Neumann map DtN: Hz (9Q) — H~2 (9Q) yields an alternative characterisa-

tion of the norm || - ||ﬁ%(aﬂ). Indeed, let u € H? (992). Then Green’s identity implies that
N
[l iﬁ(am = [|Eul} = Z/Q VEu (x) - VEu (x) dx
N -
- ;<DtNu|8Q“u|aQi>H’%(c‘)Qi)><H%(BQi)
= (DtNw, u) 3 o0y (o0)°
Corollary A.5. Combining Corollary A.2 and Remark A.4 yields that the norm ||| - |||: H2 (9Q) — R defined

through Definition 2.15 is indeed equivalent to the || - || norm introduced in Section 2.

H? (09)
APPENDIX B. PROOF OoF LEMMA 2.6

Proof. Let ® := (®~,®T) € H(27) x H(Q") be a solution to the transmission problem (2.1). It follows from
Green’s representation theorem (see, e.g., [49], Thm. 3.1.6) that for each s € {4, —} it holds that

B =8 (0 ")

QS .
It follows from the hypothesis of the transmission problem (2.1) that

47 K
ATt = g — S ATDT
'YN Ko f HO’)/N )

so that

1 o o 4
= (Ho (507N<I> — kyn® )—i—%af)

Ko— K _ . _ 47
= P =2
V ( ko ’}/N ) + Ko VUf

— 4
=V (HO KDtN’y@) + Vo,
Ko Ko

Define v := V=14~ ®~ and use the fact that V=1: H2 (9Q) — H~z (99) is a bijection to obtain that

— 4
v= (HO HDtNVl/) + Iaf.
Ko Ko

This completes the first part of the proof.
For the converse, let v € H-3 (09) be a solution to the BIE (2.2). It follows from the jump properties of the
single layer potential (see, e.g., [49], Thm. 3.3.1) that

v="9ySv— fy]f[Su.

Define (®7,9%) = (Sv|o-,Sv|g+). The definition of the single layer potential implies that we need only
check the jump condition for the normal derivative. We observe that

EYN®T — mﬂj{,qf" = KDtNY~ &~ + kv — kgDtNy~ &~
= (k — ko) DINY~ @~ + kg
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It follows from the hypothesis of BIE (2.2) that
KYN®™ — koY ®T = (k — ko) DINY™ @™ + kv = 4moy.

This completes the proof. O
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