A non-local macroscopic model for traffic flow
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 689-711

In this work, we propose a non-local Hamilton–Jacobi model for traffic flow and we prove the existence and uniqueness of the solution of this model. This model is justified as the limit of a rescaled microscopic model. We also propose a numerical scheme and we prove an estimate error between the continuous solution of this problem and the numerical one. Finally, we provide some numerical illustrations.

DOI : 10.1051/m2an/2021006
Classification : 76A30, 35B27, 35D40, 35F21
Keywords: Traffic flow, macroscopic models, non-local model, homogenization, viscosity solutions, Hamilton–Jacobi equations
@article{M2AN_2021__55_2_689_0,
     author = {Ciotir, Ioana and Fayad, Rim and Forcadel, Nicolas and Tonnoir, Antoine},
     title = {A non-local macroscopic model for traffic flow},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {689--711},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2021006},
     mrnumber = {4238781},
     zbl = {1470.76021},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021006/}
}
TY  - JOUR
AU  - Ciotir, Ioana
AU  - Fayad, Rim
AU  - Forcadel, Nicolas
AU  - Tonnoir, Antoine
TI  - A non-local macroscopic model for traffic flow
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 689
EP  - 711
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021006/
DO  - 10.1051/m2an/2021006
LA  - en
ID  - M2AN_2021__55_2_689_0
ER  - 
%0 Journal Article
%A Ciotir, Ioana
%A Fayad, Rim
%A Forcadel, Nicolas
%A Tonnoir, Antoine
%T A non-local macroscopic model for traffic flow
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 689-711
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021006/
%R 10.1051/m2an/2021006
%G en
%F M2AN_2021__55_2_689_0
Ciotir, Ioana; Fayad, Rim; Forcadel, Nicolas; Tonnoir, Antoine. A non-local macroscopic model for traffic flow. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 689-711. doi: 10.1051/m2an/2021006

[1] O. Alvarez, E. Carlini, R. Monneau and E. Rouy, Convergence of a first order scheme for a non local eikonal equation. IMACS J. Appl. Numer Math. 56 (2006) 1136–1146. | MR | Zbl | DOI

[2] S. Awatif, Equations d’hamilton-jacobi du premier ordre avec termes intégro-différentiels. Commun. Part. Differ. Equ. 16 (1991) 1057–1074. | MR | Zbl | DOI

[3] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. | MR | Zbl | DOI

[4] F. A. Chiarello, An overview of non-local traffic flow models. Preprint (2019). | HAL | MR | Zbl

[5] F. A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52 (2018) 163–180. | MR | Zbl | Numdam | DOI

[6] F. A. Chiarello and P. Goatin, Non-local multi-class traffic flow models. Netw. Heterog. Media 14 (2019) 371–387. | MR | Zbl | DOI

[7] F. A. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb, A non-local traffic flow model for 1-to-1 junctions. Eur. J. Appl. Math. (2019). | MR | Zbl

[8] F. A. Chiarello, J. Friedrich, P. Goatin and S. Göttlich, Micro-Macro limit of a non-local generalized Aw-Rascle type model. SIAM J. Appl. Math. 80 (2020) 1841–1861. | MR | Zbl | DOI

[9] M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43 (1984) 1–19. | MR | Zbl | DOI

[10] C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transp. Res. Part B Methodol. 39 (2005) 187–196. | DOI

[11] C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications. Netw. Heterogen. Media 1 (2006) 601–619. | MR | Zbl | DOI

[12] C. De Filippis and P. Goatin, The initial-boundary value problem for general non-local scalar conservation laws in one space dimension. Nonlinear Anal. 161 (2017) 131–156. | MR | Zbl | DOI

[13] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinburgh: Sect. Math. 111 (1989) 359–375. | MR | Zbl | DOI

[14] N. Forcadel, C. Imbert and R. Monneau, Homogenization of fully overdamped frenkel–kontorova models. J. Differ. Equ. 246 (2009) 1057–1097. | MR | Zbl | DOI

[15] N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete Contin. Dyn. Syst. 23 (2009) 785–826. | MR | Zbl | DOI

[16] N. Forcadel, C. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with n types of particles. Trans. Am. Math. Soc. 364 (2012) 6187–6227. | MR | Zbl | DOI

[17] M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models. In: Vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). | MR | Zbl

[18] P. Goatin and E. Rossi, Well-posedness of IBVP for 1D scalar non-local conservation laws. J. Appl. Math. Mech./Z. Angew. Math. Mech. 99 (2019). | MR | Zbl

[19] P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media 11 (2016) 107–121. | MR | Zbl | DOI

[20] K. Han, T. Yao and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation. Preprint (2012). | arXiv

[21] E. Hopf, On the right weak solution of the Cauchy problem for a quasilinear equation of first order. J. Math. Mech. 19 (1969/1970) 483–487. | MR | Zbl

[22] C. Imbert, R. Monneau and E. Rouy, Homogenization of first order equations with (u/ε)-periodic Hamiltonians. II. App. Dislocations Dynamics. Comm. Part. Differ. Equ 33 (2008) 479–516. | MR | Zbl | DOI

[23] H. Ishii, Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55 (1987) 369–384. | MR | Zbl | DOI

[24] J. A. Laval and L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow. Transp. Res. Part B: Methodol. 52 (2013) 17–30. | DOI

[25] P. D. Lax, Hyperbolic systems of conservation laws. II. Comm. Pure Appl. Math. 10 (1957) 537–566. | MR | Zbl | DOI

[26] J. P. Lebacque and M. M. Khoshyaran, A variational formulation for higher order macroscopic traffic flow models of the GSOM family. Transp. Res. Part B: Methodol. 57 (2013) 245–255. | DOI

[27] L. Leclercq, J. A. Laval and E. Chevallier, The lagrangian coordinates and what it means for first order traffic flow models. In: Proc. of the 17th International Symposium on Transportation and Traffic Theory. Elsevier (2007) 735–753.

[28] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. London. Series A. Math. Phys. Sci. 229 (1955) 317–345. | MR | Zbl

[29] P.-L. Lions, G. C. Papanicolaou and S. R. S. Varadhan, Homogeneization of hamilton-jacobi equations. Unpublished (1986).

[30] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations. Amer. Math. Soc. Transl. 26 (1963) 95–172. | MR | Zbl

[31] P. I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. | MR | Zbl | DOI

Cité par Sources :