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A NON-LOCAL MACROSCOPIC MODEL FOR TRAFFIC FLOW

Ioana Ciotir, Rim Fayad, Nicolas Forcadel* and Antoine Tonnoir

Abstract. In this work, we propose a non-local Hamilton–Jacobi model for traffic flow and we prove
the existence and uniqueness of the solution of this model. This model is justified as the limit of
a rescaled microscopic model. We also propose a numerical scheme and we prove an estimate error
between the continuous solution of this problem and the numerical one. Finally, we provide some
numerical illustrations.
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1. Introduction

Traffic flow modelling is an important challenge and has known an important development in the last decades.
The goal of this paper is to propose a new non-local macroscopic model for traffic flow. Macroscopic models con-
sider quantities that describe the collective behaviour of traffic flow. At the macroscopic scale, the most popular
model is the LWR model (see [28,31]). This model, expressed in the Eulerian coordinates, describes the dynamics
of the density of vehicles. Since these pioneering works, a lot of models have been proposed and we refer to [17]
for an overview of these models. More recently other approaches have been proposed. First, using the lagrangian
coordinates, the LWR model can be reformulated to describe the dynamics of the spacing (see [27]). Moreover, all
these models could be reformulated using a Hamilton–Jacobi equation. Indeed, the link between conservation laws
and Hamilton–Jacobi equations has been known to mathematicians for decades [21,25,30], but was brought up to
the attention of the traffic flow theory community just recently by [10, 11] (see also [24]). At the Hamilton–Jacobi
level, the link between eulerian and lagrangian coordinates is given in [20] (see also [26]).

More recently, non-local LWR models have been proposed in order to take into account the action of drivers
to the surrounding density of other vehicles, see [3]. We also refer to [4–8,12,18].

In the present paper, we propose a new non-local macroscopic model. This model is expressed in the lagrangian
coordinates at the Hamilton–Jacobi level. It then describes the dynamics of the position of the vehicles. In our
model, drivers will adapt their velocity to the downstream traffic, assigning greater importance to close vehicles.

Our model is obtained by rescaling a microscopic model, which describes the dynamics of each vehicle
individually. We recall in particular that the main advantage of microscopic models is that they are easily
justifiable but, with these models, it is difficult to model the traffic at the scale of a road or a city since the
number of vehicles becomes too large.

Keywords and phrases. Traffic flow, macroscopic models, non-local model, homogenization, viscosity solutions, Hamilton–Jacobi
equations.
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1.1. Description of the model and assumptions

The non-local macroscopic model we propose is the following:⎧⎪⎨⎪⎩𝑢𝑡 = 𝑉

(︃
1∫︀ +∞

0
𝑔(𝑧)d𝑧

∫︁ ∞

0

(︂
𝑢(𝑡, 𝑥+ 𝑧)− 𝑢(𝑡, 𝑥)

𝑧

)︂
𝑔(𝑧)d𝑧

)︃
on ]0, 𝑇 [×R;

𝑢(0, 𝑥) = 𝑢0(𝑥) on R.
(1.1)

In this model, expressed in the Lagrangian coordinates, 𝑢 represents the position, at time 𝑡 of the car 𝑥. The
velocity of the car is given by 𝑢𝑡 while the spacing is given by 𝑢𝑥. Moreover, using the link between Lagrangian
and Eulerian coordinates, the density of cars is given by 1/𝑢𝑥. In this model, the function 𝑔, called the weight,
is decreasing and takes into account the fact that drivers will adapt their velocity to the downstream traffic,

assigning a greater importance to close vehicles. The non-local term
𝑢(𝑡, 𝑥+ 𝑧)− 𝑢(𝑡, 𝑥)

𝑧
represents the average

spacing between vehicles 𝑥 and 𝑥 + 𝑧. Finally, the function 𝑉 is called an optimal velocity function and is
non-negative, non-decreasing and bounded. Precise assumptions on 𝑔 and 𝑉 are given below:

(H1) 𝑉 : R → [0,+∞[ is Lipschitz continuous and non-negative.
(H2) 𝑉 is non-decreasing on R.
(H3) There exists ℎ0 ∈ (0,+∞) such that for all ℎ ≤ ℎ0, 𝑉 (ℎ) = 0.
(H4) There exists ℎmax ∈ (ℎ0,+∞) such that for all ℎ ≥ ℎmax, 𝑉 (ℎ) = 𝑉 (ℎmax) = 𝑉max.
(H5) 𝑔 : [0; +∞[→ [0; +∞[ is 𝐿1(]0,+∞[).
(H6) There exists 𝛿 > 0 such that for all 𝑥 ∈ [0, 1] we have that

𝑔(𝑥) ≥ 𝛿.

(H7) The function 𝑧 ↦→ 𝑧 · 𝑔(𝑧) is 𝐿1(]0; +∞[).

We denote by (H) the set of assumptions (H1)–(H7).

1.2. Main results

The first main result of the paper is an existence and uniqueness result for the macroscopic non local model
(1.1).

Theorem 1.1 (Existence and uniqueness for the macroscopic model). Assume (H) and let 𝑢0 be a Lipschitz
continuous and non-decreasing function. Then Problem (1.1) admits a unique solution 𝑢 which is Lipschitz
continuous and non-decreasing.

The second main result is a justification of the macroscopic model. In fact, we will show that our macroscopic
model can been obtained by rescaling a microscopic model. More precisely, we consider the following microscopic
model:

𝑈̇𝑖(𝑡) = 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀(𝑘)

∞∑︁
𝑗=1

𝑔𝜀(𝑗)
𝑈𝑖+𝑗(𝑡)− 𝑈𝑖(𝑡)

𝑗

⎞⎠ (1.2)

where 𝑔𝜀(𝑗) = 𝑔(𝜀𝑗). The rescaling in the function 𝑔 takes into account that the weight of the closer cars is more

and more important as 𝜀 goes to zero. In this model, the term
𝑈𝑖+𝑗(𝑡)− 𝑈𝑖(𝑡)

𝑗
represents the average distance

of two successive vehicles comprised between vehicles 𝑖 and 𝑖+ 𝑗. Then the velocity of the vehicle 𝑖 depends on
the weighted average of these average distances.

Concerning the initial condition, let us assume that, at initial time, vehicles satisfy

𝑈𝑖(0) = 𝜀−1𝑢0(𝑖𝜀)
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for some 𝜀 > 0 and where 𝑢0 is a Lipschitz continuous function (we denote by 𝐿0 its Lipschitz constant). From
a traffic point of view, we also assume that 𝑢0 is non-decreasing.

Then, if we define 𝑢𝜀 by

𝑢𝜀(𝑡, 𝑥) := 𝜀𝑈⌊ 𝑥
𝜀 ⌋

(︂
𝑡

𝜀

)︂
, (1.3)

we have the following result.

Theorem 1.2 (Micro-macro limit). Under assumption (H), if moreover 𝑢0 is Lipschitz continuous, then the
function 𝑢𝜀 defined in (1.3) converges to the unique solution 𝑢 of (1.1).

In fact, the idea of the proof of this theorem is inspired by [15, 16] and consists in injecting the microscopic
models into a partial differential equation. More precisely, we have that the function 𝑢𝜀 is solution of the
following problem

𝑢𝜀
𝑡 = 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀(𝑘)

∞∑︁
𝑗=1

𝑔𝜀(𝑗)
𝑢𝜀(𝑡, 𝑥+ 𝜀𝑗)− 𝑢𝜀(𝑡, 𝑥)

𝜀𝑗

⎞⎠ on ]0, 𝑇 [×R;

the result is then obtained by homogenization (i.e. a passage as 𝜀 → 0) of this non-local PDE. We refer to
[13,29] for homogenization results in the local case and to [14–16,22] for the non-local case.

In the last Section of the paper, we also consider the numerical analysis of the macroscopic model (1.1).
We propose a finite difference numerical scheme and we prove an error estimate between the solution of the
macroscopic model (1.1) and its numerical approximation. We also provide some numerical simulations.
Organization of the paper. This article is organized as follow. In Section 2, we present the microscopic
problem. The existence and uniqueness of the solution of this problem are proved. Section 3 is devoted to the
study of the macroscopic problem where a comparison principle is proved. The proof of the homogenization
result is given in Section 4. Finally in Section 5, we present a numerical scheme with an error estimate result.
We also present some numerical simulations.

2. Well-posedness of the microscopic problem

The goal of this section is to give some preliminary results for the following problem⎧⎪⎪⎨⎪⎪⎩
𝑢𝜀

𝑡 = 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀(𝑘)

∞∑︁
𝑗=1

𝑔𝜀(𝑗)
𝑢𝜀(𝑡, 𝑥+ 𝜀𝑗)− 𝑢𝜀(𝑡, 𝑥)

𝜀𝑗

⎞⎠ on ]0, 𝑇 [×R;

𝑢𝜀(0, 𝑥) = 𝑢0(𝑥) on R.

(2.1)

We will show in particular a comparison principle as well as an existence result. We shall recall first the definition
of a viscosity solution.

Definition 2.1. Let 𝑢 : [0, 𝑇 [×R → R be an upper semi-continuous function and 𝑣 be a lower semi-continuous
function. We assume that there exists a constant 𝐶0 such that

|𝑢 (𝑡, 𝑥)− 𝑢0 (𝑥)| ≤ 𝐶0𝑡 and |𝑣 (𝑡, 𝑥)− 𝑣0 (𝑥)| ≤ 𝐶0𝑡.

We say that 𝑢 is a viscosity sub-solution of (2.1) if 𝑢(0, ·) ≤ 𝑢0 and if, for all 𝜑 ∈ 𝐶1 (]0, 𝑇 [× R) such that
𝑢− 𝜑 attends a maximum point in

(︀
𝑡, 𝑥
)︀
∈]0, 𝑇 [×R we have that

𝜑𝑡

(︀
𝑡, 𝑥
)︀
≤ 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢
(︀
𝑡, 𝑥+ 𝜀𝑗

)︀
− 𝑢

(︀
𝑡, 𝑥
)︀

𝜀𝑗

⎞⎠ ·
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We say that 𝑣 is a viscosity super-solution of equation (2.1) if 𝑣(0, ·) ≥ 𝑢0 and if, for all 𝜑 ∈ 𝐶1 (]0, 𝑇 [× R)
such that 𝑢− 𝜑 attends a minimum point in

(︀
𝑡, 𝑥
)︀
∈]0, 𝑇 [×R we have that

𝜑𝑡

(︀
𝑡, 𝑥
)︀
≥ 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢
(︀
𝑡, 𝑥+ 𝜀𝑗

)︀
− 𝑢

(︀
𝑡, 𝑥
)︀

𝜀𝑗

⎞⎠ ·
Finally, we say that 𝑢 is a solution of (2.1) if 𝑢* is a sub-solution and 𝑢* is a super-solution of (2.1).

Remark 2.2. We recall that 𝑢* and 𝑢* are respectively the upper and lower semi-continuous envelope of 𝑢
defined by

𝑢*(𝑡, 𝑥) = lim sup
(𝑠,𝑦)→(𝑡,𝑥)

𝑢(𝑠, 𝑦) and 𝑢*(𝑡, 𝑥) = lim inf
(𝑠,𝑦)→(𝑡,𝑥)

𝑢(𝑠, 𝑦).

We now give the comparison principle for (2.1).

Theorem 2.3 (Comparison principle for (2.1)). Let 𝑢 and 𝑣 be respectively a sub- and a super-solution of (2.1).
We assume that there exists a constant 𝐶0 such that

|𝑢 (𝑡, 𝑥)− 𝑢0 (𝑥)| ≤ 𝐶0𝑡 and |𝑣 (𝑡, 𝑥)− 𝑢0 (𝑥)| ≤ 𝐶0𝑡.

Then
𝑢 ≤ 𝑣 on [0, 𝑇 ]× R.

Proof. For 𝜂 > 0, let

𝑀 = sup
(𝑡,𝑥)

{︂
𝑢(𝑡, 𝑥)− 𝑣(𝑡, 𝑥)− 𝜂

𝑇 − 𝑡

}︂
·

We assume, by contradiction, that 𝑀 > 0. For 𝛼, 𝜃, 𝛿 > 0, we duplicate the variable by considering

𝑀𝜃,𝛿 = sup
(𝑡,𝑠,𝑥,𝑦)

{︃
𝑢 (𝑡, 𝑥)− 𝑣 (𝑠, 𝑦)− 𝛼𝑥2 − 𝜂

𝑇 − 𝑡
− (𝑡− 𝑠)2

2𝛿
− (𝑥− 𝑦)2

2𝜃

}︃
·

Let
(︀
𝑡, 𝑠, 𝑥̃, 𝑦

)︀
be a point of maximum of 𝑀𝜃,𝛿. By assumption, we have, for 𝛼 small enough, that 𝑀𝜃,𝛿 > 0.

This implies in particular that

𝛼̃︀𝑥2 +

(︀̃︀𝑡− ̃︀𝑠)︀2
2𝛿

+
(̃︀𝑥− ̃︀𝑦)2

4𝜃
≤ 𝑢(̃︀𝑡, ̃︀𝑥)− 𝑣(̃︀𝑠, ̃︀𝑦)− (̃︀𝑥− ̃︀𝑦)2

4𝜃

≤ 𝑢0(̃︀𝑥)− 𝑢0(̃︀𝑦) + 2𝐶0𝑇 −
(̃︀𝑥− ̃︀𝑦)2

4𝜃
≤ 𝐶,

where 𝐶 is a positive constant. We then deduce that

𝛼̃︀𝑥→ 0, |̃︀𝑡− ̃︀𝑠| → 0, |̃︀𝑥− ̃︀𝑦| → 0

respectively as 𝛼, 𝛿 and 𝜃 go to zero. We now claim that ̃︀𝑡, ̃︀𝑠 > 0 for 𝛿 and 𝜃 small enough. Indeed, by
contradiction, assume that ̃︀𝑡 = 0 (the proof for ̃︀𝑠 is similar). We then have

𝜂

𝑇
≤𝑢(0, ̃︀𝑥)− 𝑣(̃︀𝑠, ̃︀𝑦) ≤ 𝑢0(̃︀𝑥)− 𝑢0(̃︀𝑦) + 𝐶0̃︀𝑠 ≤ 𝐿0|̃︀𝑥− ̃︀𝑦|+ 𝐶0̃︀𝑠.

Taking 𝛿 and 𝜃 small enough, we get a contradiction.
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We are now able to use the equation satisfied by 𝑢 and 𝑣. We consider

Φ1 (𝑡, 𝑥) = 𝑣 (𝑠, 𝑦) + 𝛼𝑥2 +
𝜂

𝑇 − 𝑡
+

(𝑡− 𝑠)2

2𝛿
+

(𝑥− 𝑦)2

2𝜃
and

Φ2 (𝑠, 𝑦) = 𝑢
(︀
𝑡, 𝑥̃
)︀
− 𝛼𝑥̃2 − 𝜂

𝑇 − 𝑡
−
(︀
𝑡− 𝑠

)︀2
2𝛿

− (𝑥̃− 𝑦)2

2𝜃
·

We can easily see that Φ1 and Φ2 belong to 𝐶1 (]0, 𝑇 [× R) and that 𝑢 − Φ1 has a maximum point in(︀
𝑡, 𝑥̃
)︀
∈]0, 𝑇 [×R and 𝑣 − Φ2 has a minimum point in (𝑠, 𝑦) ∈]0, 𝑇 [×R.

Hence, by definition of viscosity solutions, we get that

𝜂(︀
𝑇 − 𝑡

)︀2 +

(︀
𝑡− 𝑠

)︀
𝛿

≤ 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢
(︀
𝑡, 𝑥̃+ 𝜀𝑗

)︀
− 𝑢

(︀
𝑡, 𝑥̃
)︀

𝜀𝑗

⎞⎠
and (︀

𝑡− 𝑠
)︀

𝛿
≥ 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑣 (𝑠, 𝑦 + 𝜀𝑗)− 𝑣 (𝑠, 𝑦)

𝜀𝑗

⎞⎠ ·
We subtract the two previous inequalities and we get that

𝜂

𝑇 2
≤ 𝜂(︀

𝑇 − 𝑡
)︀2 ≤ 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢
(︀
𝑡, 𝑥̃+ 𝜀𝑗

)︀
− 𝑢

(︀
𝑡, 𝑥̃
)︀

𝜀𝑗

⎞⎠
−𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑣 (𝑠, 𝑦 + 𝜀𝑗)− 𝑣 (𝑠, 𝑦)

𝜀𝑗

⎞⎠ · (2.2)

Using that
(︀
𝑡, 𝑠, 𝑥̃, 𝑦

)︀
is a point of maximum of 𝑀𝜃,𝛿, we have, for all (𝑡, 𝑠, 𝑥, 𝑦) that

𝑢 (𝑡, 𝑥)− 𝑣 (𝑠, 𝑦)− 𝛼𝑥2 − 𝜂

𝑇 − 𝑡
− (𝑡− 𝑠)2

2𝛿
− (𝑥− 𝑦)2

2𝜃

≤ 𝑢
(︀
𝑡, 𝑥̃
)︀
− 𝑣 (𝑠, 𝑦)− 𝛼𝑥̃2 − 𝜂

𝑇 − 𝑡
−
(︀
𝑡− 𝑠

)︀2
2𝛿

− (𝑥̃− 𝑦)2

2𝜃
·

Choosing 𝑥 = 𝑥̃+ 𝜀𝑗, 𝑦 = 𝑦 + 𝜀𝑗, 𝑡 = 𝑡 and 𝑠 = 𝑠, we get that

𝑢
(︀
𝑡, 𝑥̃+ 𝜀𝑗

)︀
− 𝑢

(︀
𝑡, 𝑥̃
)︀
− (𝑣 (𝑠, 𝑦 + 𝜀𝑗)− 𝑣 (𝑠, 𝑦)) ≤ −𝛼𝑥̃2 + 𝛼 (𝑥̃+ 𝜀𝑗)2 = 𝛼

(︀
2𝑥̃𝜀𝑗 + 𝜀2𝑗2

)︀
which means that

𝑢
(︀
𝑡, 𝑥̃+ 𝜀𝑗

)︀
− 𝑢

(︀
𝑡, 𝑥̃
)︀

𝜀𝑗
≤ (𝑣 (𝑠, 𝑦 + 𝜀𝑗)− 𝑣 (𝑠, 𝑦))

𝜀𝑗
+ 𝛼 (2𝑥̃+ 𝜀𝑗) .

Injecting this in (2.2) and using the monotonicity of 𝑉 , we get

𝜂

𝑇 2
≤ 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)

(︃
𝑣 (𝑠, 𝑦 + 𝑗𝜀)− 𝑣

(︀
𝑠, 𝑡
)︀

𝜀𝑗
+ 𝛼(2̃︀𝑥+ 𝜀𝑗)

)︃⎞⎠
− 𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑣 (𝑠, 𝑦 + 𝑗𝜀)− 𝑣 (𝑠, 𝑦)

𝜀𝑗

⎞⎠
≤ 𝐶𝛼

∞∑︁
𝑗=1

𝑔𝜀(𝑗)(2̃︀𝑥+ 𝜀𝑗).
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Using that 𝑔 and 𝑧 ↦→ 𝑧𝑔(𝑧) are in 𝐿1, we get a contradiction for 𝛼 small enough. �

We also give a comparison principle in a bounded set that will be useful later. Since the proof is similar to
the previous one, we skip it.

Theorem 2.4 (Comparison in a bounded set). Let Ω be a subset of [0, 𝑇 ] × R and 𝑢 and 𝑣 be respectively a
sub-solution and a super-solution of (2.1) in Ω. We assume that there exists a constant 𝐶0 such that

|𝑢 (𝑡, 𝑥)− 𝑢0 (𝑥)| ≤ 𝐶0𝑡 and |𝑣 (𝑡, 𝑥)− 𝑢0 (𝑥)| ≤ 𝐶0𝑡.

We also assume that 𝑢 ≤ 𝑣 outside Ω. Then

𝑢 ≤ 𝑣 on [0, 𝑇 ]× R.

We can now give the existence and uniqueness result for problem (2.1)

Theorem 2.5. Let 𝑢0 ∈ 𝐿𝑖𝑝 (R). For all 𝜀 > 0, there exists a unique solution 𝑢𝜀 of (2.1) such that there is a
positive constant 𝐶0 (depending only on the Lipschitz constant of 𝑢0) such that

|𝑢𝜀 (𝑡, 𝑥)− 𝑢0 (𝑡, 𝑥)| ≤ 𝐶0𝑡, ∀𝑡, 𝑥 ∈ [0, 𝑇 [× R. (2.3)

Proof. We use Perron’s method (see [23]) to prove the existence of 𝑢𝜀, the uniqueness being a direct consequence
of Theorem 2.3. It is sufficient to show that 𝑢0 ± 𝐶0𝑡 are respectively super- and sub-solution of (2.1) for a
suitable choice of 𝐶0.

We start by verifying that 𝑢0 + 𝐶0𝑡 is a super-solution. Since 𝑢0 is assumed to be Lipschitz continuous with
Lipschitz constant 𝐿0, we have that

𝑢0 (𝑥+ 𝜀𝑗)− 𝑢0 (𝑥) ≤ 𝐿0𝜀𝑗.

Using that 𝑔𝜀 (𝑗) = 𝑔𝜀(𝑗)∑︀∞
𝑘=1 𝑔𝜀(𝑘) is positive, we obtain that

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢0 (𝑡, 𝑥+ 𝑗𝜀)− 𝑢0 (𝑡, 𝑥)

𝜀𝑗
≤

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)𝐿0 = 𝐿0.

Since 𝑉 is non-decreasing we get

𝑉

⎛⎝ 1∑︀∞
𝑘=1 𝑔

𝜀 (𝑘)

∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢0 (𝑡, 𝑥+ 𝑗𝜀) + 𝐶0𝑡− 𝑢0 (𝑡, 𝑥)− 𝐶0𝑡

𝜀𝑗

⎞⎠
= 𝑉

⎛⎝ ∞∑︁
𝑗=1

𝑔𝜀 (𝑗)
𝑢0 (𝑡, 𝑥+ 𝑗𝜀)− 𝑢0 (𝑡, 𝑥)

𝜀𝑗

⎞⎠ ≤ 𝑉 (𝐿0) .

Choosing 𝐶0 = 𝑉 (𝐿0), we get that 𝑢0 + 𝐶0𝑡 is a super-solution of (2.1).
Arguing in a similar way, we get that 𝑢0 − 𝐶0𝑡 is a sub-solution and the proof is complete. �

3. Well-posedness of the macroscopic model

This section is devoted to useful results concerning problem (1.1). We begin by the definition of the viscosity
solution. This definition and the main properties of the solution are inspired from [2].

In order to have the non-local term well defined and as well as for equation (2.1), we will assume that all the
sub- and super-solutions (and hence solutions) 𝑢 satify the following property:

∃𝐶0 > 0 such that |𝑢 (𝑡, 𝑥)− 𝑢0 (𝑥)| ≤ 𝐶0𝑡. (3.1)
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Definition 3.1 (Definition of 𝛼-viscosity solution for (1.1)). Let 𝛼 be a positive constant. We say that an upper
semi-continuous function 𝑢 : [0, 𝑇 ]×R → R satisfying (3.1) is a 𝛼-sub-solution of (1.1) if 𝑢(0, ·) ≤ 𝑢0 and if, for
all 𝜑 ∈ 𝐶1 (]0, 𝑇 [× R) such that 𝑢− 𝜑 has a maximum point in

(︀
𝑡, 𝑥
)︀
∈]0, 𝑇 [×R, we have that

𝜑𝑡(
(︀
𝑡, 𝑥
)︀
≤ 𝑉

(︃
1∫︀

R+
𝑔 (𝑧) d𝑧

{︃∫︁ 𝛼

0

𝜑
(︀
𝑡, 𝑥+ 𝑧

)︀
− 𝜑

(︀
𝑡, 𝑥
)︀

𝑧
𝑔 (𝑧) d𝑧

+
∫︁ +∞

𝛼

𝑢
(︀
𝑡, 𝑥+ 𝑧

)︀
− 𝑢

(︀
𝑡, 𝑥
)︀

𝑧
𝑔 (𝑧) d𝑧

}︃)︃
.

We say that a lower semi-continuous function 𝑣 : [0, 𝑇 [×R → R satisfying (3.1) is a 𝛼-super-solution of (1.1)
if 𝑣(0, ·) ≥ 𝑢0 and if, for all 𝜑 ∈ 𝐶1 (]0, 𝑇 [× R) such that 𝑣 − 𝜑 has a minimum point in

(︀
𝑡, 𝑥
)︀
∈]0, 𝑇 [×R, we

have that

𝜑𝑡

(︀
𝑡, 𝑥
)︀
≥ 𝑉

(︃
1∫︀

R+
𝑔 (𝑧) d𝑧

{︃∫︁ 𝛼

0

𝜑
(︀
𝑡, 𝑥+ 𝑧

)︀
− 𝜑

(︀
𝑡, 𝑥
)︀

𝑧
𝑔 (𝑧) d𝑧

+
∫︁ +∞

𝛼

𝑣
(︀
𝑡, 𝑥+ 𝑧

)︀
− 𝑣

(︀
𝑡, 𝑥
)︀

𝑧
𝑔 (𝑧) d𝑧

}︃)︃
.

We say that 𝑢 is a 𝛼-solution of (1.1) if it is a 𝛼-sub- and super-solution.

Remark 3.2. For simplicity of presentation, given Φ : R → R, we define

𝐼1,𝛼[Φ](𝑥) =
1∫︀ +∞

0
𝑔(𝑧)d𝑧

∫︁ 𝛼

0

(Φ(𝑥+ 𝑧)− Φ(𝑥))
𝑔(𝑧)
𝑧

d𝑧

and

𝐼2,𝛼[Φ(𝑥)] =
1∫︀ +∞

0
𝑔(𝑧)d𝑧

∫︁ +∞

𝛼

(Φ(𝑥+ 𝑧)− Φ(𝑥))
𝑔(𝑧)
𝑧

d𝑧.

Theorem 3.3 (Equivalence of 𝛼-solutions). Let 𝛼1, 𝛼2 > 0. We have that 𝑢 is a 𝛼1-sub-solution (resp. a 𝛼1-
super-solution) if and only if it is a 𝛼2-sub-solution (resp. a 𝛼2-super-solution).

Proof. We only prove the result for sub-solution, the super-solution case being similar. We assume that 𝑢 is a 𝛼1-
sub-solution and we want to show that it is a 𝛼2-sub-solution. Let 𝜓 ∈ 𝐶1(]0, 𝑇 [×R) be such that 𝑢−𝜓 reaches
a global maximum in (𝑡0, 𝑥0). We suppose that 𝑢(𝑡0, 𝑥0) = 𝜓(𝑡0, 𝑥0). For 𝜀1 > 0, there exists 𝜑1 ∈ 𝐶1(]0, 𝑇 [×R)
such that 𝜑1 ≥ 𝑢 and ||𝑢 − 𝜑1||𝐿∞ ≤ 𝜀1. We then define a test function 𝜑 ∈ 𝐶1(]0, 𝑇 [×R), which will be used
for the 𝛼1-sub-solution, by

𝜑(𝑡, 𝑥) =

{︃
𝜑1(𝑡, 𝑥) if 𝑥 ≥ 𝑥0 + 𝛼2;

𝜓(𝑡, 𝑥) if 𝑥 ≤ 𝑥0 +
𝛼2

2
·

Since 𝑢 is 𝛼1-viscosity sub-solution of (1.1) and (𝑡0, 𝑥0) is maximum point of 𝑢− 𝜑, we have

𝜑𝑡(𝑡0, 𝑥0) ≤ 𝑉
(︀
𝐼1,𝛼1 [𝜑(𝑡0, ·)](𝑥0) + 𝐼2,𝛼1 [𝑢(𝑡0, ·)](𝑥0)

)︀
.
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Using that 𝜑𝑡(𝑡0, 𝑥0) = 𝜓𝑡(𝑡0, 𝑥0), we then deduce that

𝜓𝑡(𝑡0, 𝑥0) ≤ 𝑉
(︀
𝐼1,𝛼1 [𝜑(𝑡0, ·)](𝑥0) + 𝐼2,𝛼1 [𝑢(𝑡0, ·)](𝑥0)

)︀
≤ 𝑉

(︂
𝐼1,𝛼2 [𝜑(𝑡0, ·)](𝑥0) + 𝐼2,𝛼2 [𝑢(𝑡0, ·)](𝑥0)

+
1∫︀ +∞

0
𝑔(𝑧)d𝑧

∫︁ 𝛼1

𝛼2

(𝜑(𝑡0, 𝑥0 + 𝑧)− 𝜑(𝑡0, 𝑥0))
𝑔(𝑧)
𝑧

d𝑧

− 1∫︀ +∞
0

𝑔(𝑧)d𝑧

∫︁ 𝛼1

𝛼2

(𝑢(𝑡0, 𝑥0 + 𝑧)− 𝑢(𝑡0, 𝑥0))
𝑔(𝑧)
𝑧

d𝑧
)︂

≤ 𝑉

(︂
𝐼1,𝛼2 [𝜑(𝑡0, ·)](𝑥0) + 𝐼2,𝛼2 [𝑢(𝑡0, ·)](𝑥0)

+
1∫︀ +∞

0
𝑔(𝑧)d𝑧

∫︁ 𝛼1

𝛼2

(𝜑(𝑡0, 𝑥0 + 𝑧)− 𝑢(𝑡0, 𝑥0 + 𝑧))
𝑔(𝑧)
𝑧

d𝑧
)︂

≤ 𝑉

(︂
𝐼1,𝛼2 [𝜑(𝑡0, ·)](𝑥0) + 𝐼2,𝛼2 [𝑢(𝑡0, ·)](𝑥0) +

𝜀1∫︀ +∞
0

𝑔(𝑧)d𝑧

∫︁ 𝛼1

𝛼2

𝑔(𝑧)
𝑧

d𝑧
)︂

where for the last inequality, we have used the fact that 𝑉 is non-decreasing. Sending 𝜀1 → 0 and using that 𝑔
and 𝑧 ↦→ 𝑧𝑔(𝑧) are in 𝐿1, we get the result. �

Theorem 3.4 (Comparison principle for (1.1)). Let 𝑢 be a sub-solution and 𝑣 be a super-solution of (1.1). We
assume that 𝑢 and 𝑣 satisfy (3.1). Then

𝑢 ≤ 𝑣.

Proof. We assume by contradiction that

𝑀 = sup
(𝑡,𝑥)∈(0,𝑇 )×R

{𝑢(𝑡, 𝑥)− 𝑣(𝑡, 𝑥)} > 0.

We then duplicate the variable, by considering, for 𝜂, 𝛼, 𝜀, 𝛿 > 0,

𝑀𝜀,𝛿 = sup
(𝑡,𝑠,𝑥,𝑦)

{︂
𝑢(𝑡, 𝑥)− 𝑣(𝑠, 𝑦)− (𝑡− 𝑠)2

2𝛿
− (𝑥− 𝑦)2

2𝜀
− 𝜂

𝑇 − 𝑡
− 𝛼𝑥2

}︂
.

We denote by (𝑡, 𝑠, 𝑥, 𝑦) a point of maximum of 𝑀𝜀,𝛿. For 𝜂 and 𝛼 small enough, we have 𝑀𝜀,𝛿 > 0 and we
deduce as in the proof of Theorem 2.3 that

𝛼𝑥→ 0, |𝑡− 𝑠| → 0, |𝑥− 𝑦| → 0,

respectively as 𝛼, 𝛿 and 𝜀 go to zero, and that 𝑡, 𝑠 > 0 for 𝛿 and 𝜀 small enough. We can then use the equations
satisfied by 𝑢 and 𝑣. We have that 𝑢− 𝜑1 reaches a maximum in (𝑡, 𝑥), with 𝜑1 given by

𝜑1 = 𝑣(𝑠, 𝑦) +
(𝑡− 𝑠)2

2𝛿
+

(𝑥− 𝑦)2

2𝜀
+

𝜂

𝑇 − 𝑡
+ 𝛼𝑥2.

So by definition of viscosity solution we obtain, for every 𝛼, that

(𝑡− 𝑠)
𝛿

+
𝜂

(𝑇 − 𝑡)2
≤ 𝑉

(︀
𝐼1,𝛼[𝜑1(𝑡, ·)](𝑥) + 𝐼2,𝛼[𝑢(𝑡, ·)](𝑥)

)︀
.

Since 𝑣 − 𝜑2 reaches a minimum point in (𝑠, 𝑦), with 𝜑2 given by

𝜑2 = 𝑢(𝑡, 𝑥)− (𝑠− 𝑡)2

2𝛿
− (𝑦 − 𝑥)2

2𝜀
− 𝜂

𝑇 − 𝑡
− 𝛼𝑥2,
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we also have
(𝑡− 𝑠)
𝛿

≥ 𝑉
(︀
𝐼1,𝛼[𝜑2(𝑡, ·)](𝑥) + 𝐼2,𝛼[𝑣(𝑡, ·)](𝑥)

)︀
.

We subtract the two viscosity inequalities, and we obtain

𝜂

𝑇 2
≤ 𝑉

(︀
𝐼1,𝛼

[︀
𝜑1(𝑡, ·)

]︀
(𝑥) + 𝐼2,𝛼

[︀
𝑢(𝑡, ·)

]︀
(𝑥)
)︀
− 𝑉

(︀
𝐼1,𝛼 [𝜑2(𝑠, ·)] (𝑦) + 𝐼2,𝛼 [𝑣(𝑠, ·)] (𝑦)

)︀
. (3.2)

Using that (𝑡, 𝑠, 𝑥, 𝑦) is a maximum point we obtain

𝑢(𝑡, 𝑥+ 𝑧)− 𝑣(𝑠, 𝑦 + 𝑧) ≤ 𝑢(𝑡, 𝑥)− 𝑣(𝑠, 𝑦) + 𝛼(𝑥+ 𝑧)2 − 𝛼𝑥2

and so
𝑢(𝑡, 𝑥+ 𝑧)− 𝑢(𝑡, 𝑥)

𝑧
≤ 𝑣(𝑠, 𝑦 + 𝑧)− 𝑣(𝑠, 𝑦)

𝑧
+ 𝛼(2𝑥+ 𝑧).

We then deduce that

𝐼2,𝛼[𝑢(𝑡, ·)](𝑥) ≤ 𝐼2,𝛼[𝑣(𝑠, ·)](𝑦) + 2𝛼𝑥||𝑔||𝐿1 + 𝛼||𝑧𝑔||𝐿1 ≤ 𝐼2,𝛼[𝑣(𝑠, ·)](𝑦) + 𝐶𝛼(𝑥+ 1). (3.3)

We now compare 𝐼1,𝛼[𝜑1(𝑡, ·)](𝑥) and 𝐼1,𝛼[𝜑2(𝑠, ·)](𝑦). We have

𝐼1,𝛼[𝜑1(𝑡, ·)](𝑥)− 𝐼1,𝛼[𝜑2(𝑠, ·)](𝑦) =
1∫︀ +∞

0
𝑔(𝑧)d𝑧

(︂
1
2𝜀

∫︁ 𝛼

0

(𝑥− 𝑦 + 𝑧)2 − (𝑥− 𝑦)2

𝑧
𝑔(𝑧)d𝑧

− 1
2𝜀

∫︁ 𝛼

0

(𝑦 − 𝑥)2 − (𝑦 − 𝑥+ 𝑧)2

𝑧
𝑔(𝑧)d𝑧

+ 𝛼

∫︁ 𝛼

0

(𝑥+ 𝑧)2 − 𝑥2

𝑧
𝑔(𝑧)d𝑧

)︂
=

1∫︀ +∞
0

𝑔(𝑧)d𝑧

(︂
1
𝜀

∫︁ 𝛼

0

𝑧𝑔(𝑧)d𝑧 + 𝛼

∫︁ 𝛼

0

(2𝑥+ 𝑧)𝑔(𝑧)d𝑧
)︂

≤ 𝐶

(︃
𝛼(𝑥+ 1) +

1
𝜀

∫︁ 𝛼

0

𝑧𝑔(𝑧)d𝑧

)︃
.

Injecting the previous estimate and (3.3) in (3.2) and using the fact that 𝑉 is non-decreasing, we get

𝜂

𝑇 2
≤ 𝑉

(︃
𝐼1,𝛼[𝜑2(𝑠, ·)](𝑦) + 𝐼2,𝛼[𝑣(𝑠, ·)](𝑦) + 𝐶

(︃
𝛼(𝑥+ 1) +

1
𝜀

∫︁ 𝛼

0

𝑧𝑔(𝑧)d𝑧

)︃)︃
− 𝑉

(︀
𝐼1,𝛼[𝜑2(𝑠, ·)](𝑦) + 𝐼2,𝛼[𝑣(𝑠, ·)](𝑦)

)︀
≤ 𝐶

(︃
𝛼(𝑥+ 1) +

1
𝜀

∫︁ 𝛼

0

𝑧𝑔(𝑧)d𝑧

)︃
.

Sending 𝛼, 𝛼→ 0, we get that
𝜂

𝑇 2
≤ 0

and we obtain a contradiction since 𝜂 > 0. This ends the proof. �

We are now able to give the proof of Theorem 1.1
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Proof of Theorem 1.1. As in the proof of Theorem 2.5, we have that 𝑢0 ± 𝐶0𝑡 are respectively sub- and super-
solution of (1.1), so the existence follows by Perron’s method. The uniqueness is a direct consequence of Theo-
rem 3.4. It just remains to show that 𝑢 is Lipschitz continuous.

To do that, let us define 𝑢ℎ by 𝑢ℎ(𝑡, 𝑥) = 𝑢(𝑡, 𝑥+ ℎ)− 𝐿0ℎ. In particular, we have

𝑢ℎ(0, 𝑥) = 𝑢0(𝑥+ ℎ)− 𝐿0ℎ ≤ 𝑢0(𝑥).

Moreover, since equation (1.1) is invariant by translation in space and by addition of constant, we get that 𝑢ℎ

is a sub-solution of (1.1). Hence, the comparison principle yields that

𝑢(𝑡, 𝑥+ ℎ)− 𝐿0ℎ = 𝑢ℎ(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥),

i.e.
𝑢(𝑡, 𝑥+ ℎ)− 𝑢(𝑡, 𝑥)

ℎ
≤ 𝐿0.

To show that 𝑢 is non-decreasing, we argue in a similar way by using the fact that 𝑢(𝑡, 𝑥+ ℎ) (recall that 𝑢0 is
non decreasing) is a super-solution of (1.1). This shows that 𝑢 is Lipschitz continuous in space. The fact that
𝑢 is also Lipschitz continuous in times is a direct consequence of the fact that 𝑉 is bounded.

�

4. Homogenization result

This section is devoted to the proof of the following convergence result. We will see that Theorem 1.2 is a
corollary of this result.

Theorem 4.1 (Homogenization result). Assume (H) and let 𝑢0 be a Lipschitz continuous function. Then, the
viscosity solution 𝑢𝜀 of (2.1), given by Theorem 2.5, converges as 𝜀 → 0, locally uniformly in (𝑡, 𝑥), to the
unique solution 𝑢 of (1.1).

Proof. We define 𝑢 and 𝑢 by

𝑢 = lim sup
𝜀→0,(𝑦,𝑠)→(𝑡,𝑥)

𝑢𝜀(𝑦, 𝑠) and 𝑢 = lim inf
𝜀→0,(𝑦,𝑠)→(𝑡,𝑥)

𝑢𝜀(𝑦, 𝑠).

We are going to prove that 𝑢 is a sub-solution of (1.1) on [0, 𝑇 [×R. Similarly, we can prove that 𝑢 is a super-
solution of the same equation. Then, using the comparison principle Theorem 3.4, we will get 𝑢 ≤ 𝑢 and so
𝑢 = 𝑢 = 𝑢 which implies the convergence of 𝑢𝜀 to 𝑢.

First, by (2.3), we have that 𝑢(0, ·) = 𝑢0. We argue by contradiction by assuming that 𝑢 is not a sub-solution
on ]0, 𝑇 [×R. Then there exists (𝑡0, 𝑥0) ∈]0, 𝑇 [×R and a test function Φ ∈ 𝐶1 such that 𝑢 − Φ reaches a strict
maximum in (𝑡0, 𝑥0) and such that

Φ𝑡(𝑡0, 𝑥0)− 𝑉
(︀
𝐼1,+∞[Φ(𝑡0, ·)](𝑥0)

)︀
= 𝜃 > 0. (4.1)

We also assume that 𝑢(𝑡0, 𝑥0) = Φ(𝑡0, 𝑥0). We now apply the perturbed test function method introduced by
Evans [13] in terms here of hull functions. We refer to [14, 16] for the use of hull functions as correctors. We
recall that in these papers, the perturbed test function is essentially defined by

Φ𝜀(𝑡, 𝑥) = 𝜀ℎ

(︂
Φ(𝑡, 𝑥)
𝜀

)︂
,

where ℎ is the hull function. In fact in our case, the hull function is simpler (since our Hamilton–Jacobi equation
is independent of (𝑡, 𝑥)) and is given by ℎ = 𝐼𝑑. So the perturbed test function reduces to

Φ𝜀(𝑡, 𝑥) =
{︂

Φ(𝑡, 𝑥)− 𝜂𝑟 if (𝑡, 𝑥) ∈ 𝑄1,1(𝑡0, 𝑥0)
𝑢𝜀(𝑡, 𝑥) if not
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where 𝜂𝑟 is chosen later and 𝑄𝑟,𝑅(𝑡0, 𝑥0) = (𝑡0 − 𝑟, 𝑡0 + 𝑟) × (𝑥0 − 𝑅, 𝑥0 + 𝑅). We want to prove that Φ𝜀 is
solution in 𝑄𝑟,𝑟(𝑡0, 𝑥0), of

Φ𝜀
𝑡 − 𝑉

⎛⎝ 1∑︀
𝑘≥1 𝑔

𝜀(𝑘)

∑︁
𝑗≥1

𝑔𝜀(𝑗)
Φ𝜀(𝑡, 𝑥+ 𝜀𝑗)− Φ𝜀(𝑡, 𝑥)

𝜀𝑗

⎞⎠ ≥ 0

and that Φ𝜀 ≥ 𝑢𝜀 outside 𝑄𝑟,𝑟(𝑡0, 𝑥0). In particular 𝑟 is chosen smaller that 1 so that 𝑄𝑟,𝑟(𝑡0, 𝑥0) ⊂ 𝑄1,1(𝑡0, 𝑥0).
Let us first focus on the “boundary conditions”. Since 𝑢 − Φ reaches a strict maximum at (𝑡0, 𝑥0), we can

ensure that
𝑢𝜀(𝑡, 𝑥) ≤ Φ(𝑡, 𝑥)− 𝜂𝑟 for (𝑡, 𝑥) ∈ 𝑄2,2(𝑡0, 𝑥0)∖𝑄𝑟,𝑟(𝑡0, 𝑥0)

for 𝜂𝑟 = 𝑜𝑟(1) > 0. Hence we conclude that Φ𝜀 ≥ 𝑢𝜀 outside 𝑄𝑟,𝑟(𝑡0, 𝑥0).
We now turn to the equation. Since Φ𝜀 is smooth, we can check this property pointwise. Let (𝑡, 𝑥) ∈

𝑄𝑟,𝑟(𝑡0, 𝑥0). We have

Φ𝜀
𝑡 (𝑡, 𝑥)− 𝑉

⎛⎝ 1∑︀
𝑘≥1 𝑔

𝜀(𝑘)

∑︁
𝑗≥1

𝑔𝜀(𝑗)
Φ𝜀(𝑡, 𝑥+ 𝜀𝑗)− Φ𝜀(𝑡, 𝑥)

𝜀𝑗

⎞⎠
= 𝜃 + Φ𝑡(𝑡, 𝑥)− Φ𝑡(𝑡0, 𝑥0)− 𝑉

⎛⎝ 1∑︀
𝑘≥1 𝑔

𝜀(𝑘)

∑︁
𝑗≥1

𝑔𝜀(𝑗)
Φ(𝑡, 𝑥+ 𝜀𝑗)− Φ(𝑡, 𝑥)

𝜀𝑗

⎞⎠
+ 𝑉

(︀
𝐼1,+∞[Φ(𝑡0, ·)](𝑥0)

)︀
≥ 3

4
𝜃 − 𝐶

⃒⃒⃒⃒
⃒⃒ 1∑︀

𝑘≥1 𝑔
𝜀(𝑘)

∑︁
𝑗≥1

𝑔𝜀(𝑗)
Φ(𝑡, 𝑥+ 𝜀𝑗)− Φ(𝑡, 𝑥)

𝜀𝑗
− 𝐼1,+∞[Φ(𝑡0, ·)](𝑥0)

⃒⃒⃒⃒
⃒⃒

for 𝑟 small enough. Using that, by convergence of Riemann sum,

1∑︀
𝑘≥1 𝑔

𝜀(𝑘)

∑︁
𝑗≥1

𝑔𝜀(𝑗)
Φ(𝑡, 𝑥+ 𝜀𝑗)− Φ(𝑡, 𝑥)

𝜀𝑗
→ 𝐼1,+∞[Φ(𝑡, ·)](𝑥)

we deduce, for 𝑟 small enough, that

Φ𝜀
𝑡 (𝑡, 𝑥)− 𝑉

⎛⎝ 1∑︀
𝑘≥1 𝑔

𝜀(𝑘)

∑︁
𝑗≥1

𝑔𝜀(𝑗)
Φ𝜀(𝑡, 𝑥+ 𝜀𝑗)− Φ𝜀(𝑡, 𝑥)

𝜀𝑗

⎞⎠ ≥ 𝜃

2

and show that Φ𝜀 is a super-solution in 𝑄𝑟,𝑟(𝑡0, 𝑥0). Recalling that 𝑢𝜀 ≤ Φ𝜀 outside 𝑄𝑟,𝑟(𝑡0, 𝑥0) and using the
comparison principle on bounded set Theorem 2.4, we get that

𝑢𝜀(𝑥, 𝑡) ≤ Φ𝜀(𝑥, 𝑡).

Passing to the limit as 𝜀 goes to zero, and as (𝑡, 𝑥) → (𝑡0, 𝑥0) we get that

Φ(𝑡0, 𝑥0) = 𝑢(𝑡0, 𝑥0) ≤ Φ(𝑡0, 𝑥0)− 𝜂,

which gives a contradiction with 𝜂 > 0. Therefore 𝑢 is a sub-solution of (1.1) on [0, 𝑇 [×R and this ends the
proof of the theorem.

�

We are now able to give the proof of Theorem 1.2.
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Proof of Theorem 1.2. We recall that the initial condition of 𝑢𝜀 is given by

𝑢𝜀(0, 𝑥) = 𝜀𝑈⌊ 𝑥
𝜀 ⌋(0) = 𝑢0

(︁⌊︁𝑥
𝜀

⌋︁)︁
.

Hence
𝑢0(𝑥)− 𝐿0𝜀 ≤ 𝑢0(𝑥− 𝜀) ≤ 𝑢𝜀(0, 𝑥) ≤ 𝑢0(𝑥).

Using the comparison principle Theorem 3.4, we then get

𝑢𝜀(𝑡, 𝑥)− 𝐿0𝜀 ≤ 𝑢𝜀(𝑡, 𝑥) ≤ 𝑢𝜀(𝑡, 𝑥) on [0, 𝑇 ]× R.

By convergence of 𝑢𝜀 to 𝑢 given in Theorem 4.1, we deduce the convergence of 𝑢𝜀 to 𝑢. This ends the proof of
the theorem. �

5. Numerical tests

In this section, we present a numerical scheme in order to compute the solution of the macroscopic model.
In a first subsection, we present the scheme. Then, we give some properties of the solution of the scheme and
we prove an error estimate between the numerical solution and the solution of the macroscopic model. We end
the paper with some numerical results in Section 5.3.

5.1. Discretization aspects and numerical scheme

Since problem (1.1) is defined on the unbounded line R, we need to consider a bounded computational domain
[𝑎, 𝑏] with 𝑎 < 𝑏 two real parameters. The treatment of the boundary condition on the right side, on 𝑥 = 𝑏, will
be detailed below. To implement this problem, we consider the spatial discretization 𝑥𝑖 = 𝑖∆𝑥+𝑎, 𝑖 ∈ 0, · · · , 𝑁
and ∆𝑥 = (𝑏−𝑎)

𝑁 with 𝑁 ∈ N* a parameter, so that 𝑥0 = 𝑎 and 𝑥𝑁 = 𝑏. For the time variable, we set 𝑡𝑛 = 𝑛∆𝑡
with ∆𝑡 = 𝑇/𝑁𝑡 and 𝑁𝑡 ∈ N* a second parameter. We will denote by 𝑢𝑛

𝑖 the approximation of 𝑢(𝑡𝑛, 𝑥𝑖).
Then, the main point is to handle the non-local integral term. To do so, the idea is to decompose the integral

as follows: ∫︁ +∞

0

(︂
𝑢(𝑡𝑛, 𝑥𝑖 + 𝑧)− 𝑢(𝑡𝑛, 𝑥𝑖)

𝑧

)︂
𝑔(𝑧)d𝑧 =

∫︁ 𝐴

0

(︂
𝑢(𝑡𝑛, 𝑥𝑖 + 𝑧)− 𝑢(𝑡𝑛, 𝑥𝑖)

𝑧

)︂
𝑔(𝑧)d𝑧⏟  ⏞  

=𝐼𝐴(𝑢(𝑡𝑛,·))(𝑥𝑖)

+
∫︁ 𝐵

𝐴

(︂
𝑢(𝑡𝑛, 𝑥𝑖 + 𝑧)− 𝑢(𝑡𝑛, 𝑥𝑖)

𝑧

)︂
𝑔(𝑧)d𝑧⏟  ⏞  

=𝐼(𝑢(𝑡𝑛,·))(𝑥𝑖)

+
∫︁ +∞

𝐵

(︂
𝑢(𝑡𝑛, 𝑥𝑖 + 𝑧)− 𝑢(𝑡𝑛, 𝑥𝑖)

𝑧

)︂
𝑔(𝑧)d𝑧⏟  ⏞  

=𝐼∞(𝑢(𝑡𝑛,·))(𝑥𝑖)

where 𝐴 ≥ ∆𝑥 is a small parameter (of order
√

∆𝑥) and 𝐵 is a big one. In the numerical implementation, we
simply neglect the terms 𝐼𝐴(𝑢(𝑡𝑛, ·))(𝑥𝑖) to avoid the treatment of the division by 0, which, as we will see in the
analysis of the scheme, induces an error of order 𝐴, and the last term 𝐼∞(𝑢(𝑡𝑛, ·))(𝑥𝑖) taking 𝐵 > 𝑏 sufficiently
large, which introduces a (small) consistency error. In particular, if the weight function 𝑔 is compactly supported,
this term is exactly 0 by choosing properly 𝐵.

For the remaining integral 𝐼(𝑢(𝑡𝑛, ·))(𝑥𝑖), we use a simple trapezoidal quadrature rule based on the discretiza-
tion points 𝑥𝑖, see Figure 1, in order to include directly the quantity 𝑢𝑛

𝑖 . Yet, as we can see, 𝑥𝑖 +𝑧 can be greater
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Figure 1. Illustration of the integral approximation based on the spatial discretization 𝑥𝑖.

than 𝑏, so it involves also values of 𝑢 outside the computational domain [𝑎, 𝑏]. To get these values, we will assume
that we have a constant “outgoing” flux so that

𝑢(𝑡, 𝑏+ 𝑧) = 𝑢(𝑡, 𝑏) +
𝑧

𝜌∞
∀𝑧 ≥ 0 (5.1)

where 𝜌∞ = 𝜕𝑥𝑢(𝑡, 𝑏) > 0 represents the constant density in the outgoing direction 𝑥 > 𝑏. Thus, we obtain the
following approximation:

𝐼(𝑢(𝑡𝑛, ·))(𝑥𝑖) ≃
1
2

(︂
𝑢̃𝑛

𝑖+𝑁𝐴
− 𝑢̃𝑛

𝑖

𝑁𝐴
𝑔(𝑁𝐴∆𝑥) +

𝑢̃𝑛
𝑖+𝑁𝐵

− 𝑢̃𝑛
𝑖

𝑁𝐵
𝑔(𝑁𝐵∆𝑥)

)︂
+

𝑁𝐵−1∑︁
𝑗=𝑁𝐴+1

𝑢̃𝑛
𝑖+𝑗 − 𝑢̃𝑛

𝑖

𝑗
𝑔(𝑗∆𝑥)⏟  ⏞  

:=I(𝑢̃𝑛)(𝑥𝑖)

(5.2)

where 𝑁𝐴 =
⌊︀

𝐴
Δ𝑥

⌋︀
, 𝑁𝐵 =

⌊︀
𝐵
Δ𝑥

⌋︀
and

𝑢̃𝑛
𝑘 =

⎧⎨⎩𝑢𝑛
𝑘 if 𝑘 ≤ 𝑁,

𝑢𝑛
𝑁 + (𝑘 −𝑁)∆𝑥𝑢𝑛

𝑁−𝑢𝑛
𝑁−1

Δ𝑥 if 𝑘 > 𝑁.

Note that we approximate 𝜕𝑥𝑢(𝑡, 𝑏) = 𝑢𝑛
𝑁−𝑢𝑛

𝑁−1
Δ𝑥 . To sum up, the numerical scheme is then given by:

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 + ∆𝑡𝑉
(︂

I(𝑢̃𝑛)(𝑥𝑖)
𝐼𝑔

)︂
where 𝐼𝑔 =

∫︁ +∞

0

𝑔(𝑧)d𝑧, (5.3)

and I(𝑢̃𝑛)(𝑥𝑖) is given by (5.2).

5.2. Analysis of the scheme

This approximation of the integral term is justified by the following lemma
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Lemma 5.1. There exists a constant 𝐾 ≥ 0 such that

|𝐼(𝑢(𝑡, ·))(𝑥)− I(𝑢(𝑡, ·)(𝑥)| ≤ 𝐾𝐵

𝐴
∆𝑥. (5.4)

Proof. Using that the trapezoidal quadrature error for a Lipschitz function 𝑓 is of order 𝐿𝐵∆𝑥, where 𝐿 is the
Lipschitz constant of 𝑓 , it suffices to show that the function

𝑧 ↦→ 𝑢(𝑡, 𝑥+ 𝑧)− 𝑢(𝑡, 𝑥)
𝑧

𝑔(𝑧)

is Lipschitz continuous in [𝐴,𝐵], with a Lipschitz constant given by 𝐾
𝐴 . Since 𝑧 ↦→ 𝑢(𝑡,𝑥+𝑧)−𝑢(𝑡,𝑥)

𝑧 and 𝑔 are
bounded and 𝑔 is Lipschitz continuous, it suffices to show that 𝑧 ↦→ 𝑢(𝑡,𝑥+𝑧)−𝑢(𝑡,𝑥)

𝑧 is Lipschitz continuous. Let
𝑧1, 𝑧2 ∈ [𝐴,𝐵]. We have⃒⃒⃒⃒

𝑢(𝑡, 𝑥+ 𝑧1)− 𝑢(𝑡, 𝑥)
𝑧1

− 𝑢(𝑡, 𝑥+ 𝑧2)− 𝑢(𝑡, 𝑥)
𝑧2

⃒⃒⃒⃒
≤
⃒⃒⃒⃒

1
𝑧1

(𝑢(𝑡, 𝑥+ 𝑧1)− 𝑢(𝑡, 𝑥+ 𝑧2))
⃒⃒⃒⃒

+
⃒⃒⃒⃒
𝑢(𝑡, 𝑥+ 𝑧2)− 𝑢(𝑡, 𝑥)

𝑧2
· 𝑧2 − 𝑧1

𝑧1

⃒⃒⃒⃒
≤ 2𝐿0

𝐴
|𝑧1 − 𝑧2|.

�

We now prove, under the following CFL condition

∆𝑡 ≤ 𝐼𝑔
𝐿ℐ

where ℐ =
1

2𝑁𝐴
𝑔(𝑁𝐴∆𝑥) +

⎡⎣ 𝑁𝐵−1∑︁
𝑗=𝑁𝐴+1

𝑔(𝑗∆𝑥)
𝑗

⎤⎦+
1

2𝑁𝐵
𝑔(𝑁𝐵∆𝑥) (5.5)

and 𝐿 is the Lipschitz constant associated to 𝑉 , that the scheme is monotone.

Remark 5.2. We can notice that the CFL condition does not explicitly depend on the space step ∆𝑥. Indeed,
we can remark that the term ℐ corresponds to the trapezoidal quadrature rule applied to the function 𝑔(𝑧)

𝑧 on
the interval (𝐴,𝐵). Also, it is worth recalling that for the “local” equation 𝑢𝑡 = 𝑉 (𝑢𝑥) discretized with the
simple scheme

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 + ∆𝑡𝑉
(︂
𝑢𝑛

𝑖+1 − 𝑢𝑛
𝑖

∆𝑥

)︂
the CLF condition is ∆𝑡 ≤ Δ𝑥

𝐿 . This condition is usually worse than the one obtained in the non local case if
𝑔(𝑁𝐴∆𝑥) is small.

Theorem 5.3 (Monotonicity of the scheme). Assume that (5.5) holds and let 𝑢 and 𝑣 be respectively a sub and
a super-solution of the scheme, i.e. such that

𝑢𝑛+1
𝑖 ≤ 𝑢𝑛

𝑖 + ∆𝑡𝑉
(︂

I(𝑢̃𝑛)(𝑥𝑖)
𝐼𝑔

)︂
and 𝑣𝑛+1

𝑖 ≥ 𝑣𝑛
𝑖 + ∆𝑡𝑉

(︂
I(𝑣𝑛)(𝑥𝑖)

𝐼𝑔

)︂
·

Assume also that 𝑢0
𝑖 ≤ 𝑣0

𝑖 for all 𝑖 ∈ {0, . . . , 𝑁}. Then

𝑢𝑛
𝑖 ≤ 𝑣𝑛

𝑖 ∀𝑖 ∈ {0, . . . , 𝑁}, 𝑛 ∈ {0, . . . , 𝑁𝑇 }.

Proof. The proof is made by induction. The initialization is true by hypothesis. Assume that for a certain 𝑛,
we have

𝑢𝑛
𝑖 ≤ 𝑣𝑛

𝑖 ∀𝑖 ∈ {0, . . . , 𝑁}.
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We have

𝑢𝑛+1
𝑖 − 𝑣𝑛+1

𝑖 ≤ 𝑢𝑛
𝑖 − 𝑣𝑛

𝑖 + ∆𝑡
(︂
𝑉

(︂
I(𝑢̃𝑛)(𝑥𝑖)

𝐼𝑔

)︂
− 𝑉

(︂
I(𝑣𝑛)(𝑥𝑖)

𝐼𝑔

)︂)︂
·

Using that
I(𝑢̃𝑛)(𝑥𝑖) ≤ I(𝑣𝑛)(𝑥𝑖)− (𝑢𝑛

𝑖 − 𝑣𝑛
𝑖 )ℐ

and since 𝑉 is monotone, we deduce that

𝑢𝑛+1
𝑖 − 𝑣𝑛+1

𝑖 ≤ 𝑢𝑛
𝑖 − 𝑣𝑛

𝑖 + ∆𝑡
(︂
𝑉

(︂
I(𝑣𝑛)(𝑥𝑖)− (𝑢𝑛

𝑖 − 𝑣𝑛
𝑖 )ℐ

𝐼𝑔

)︂
− 𝑉

(︂
I(𝑣𝑛)(𝑥𝑖)

𝐼𝑔

)︂)︂
≤ (𝑢𝑛

𝑖 − 𝑣𝑛
𝑖 )
(︂

1− ∆𝑡
𝐼𝑔
𝐿ℐ
)︂

≤ 0.

This ends the proof. �

We now show that (𝑢𝑛
𝑖 )𝑖 is non decreasing and “Lipschitz continuous”.

Theorem 5.4 (Monotonicity and Lipschitz bounds on the numerical solution). For all 𝑖 ∈ {0, . . . , 𝑁} and
𝑛 ∈ {0, . . . , 𝑁𝑇 − 1}, we have

0 ≤ 𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖

∆𝑡
≤ 𝑉max. (5.6)

Moreover, if we assume that (5.5) holds and that

0 ≤
𝑢0

𝑖+1 − 𝑢0
𝑖

∆𝑥
≤ 𝐿0

for all 𝑖 ∈ {0, . . . , 𝑁 − 1}, then, for all 𝑖 ∈ {0, . . . , 𝑁 − 1} and 𝑛 ∈ {0, . . . , 𝑁𝑇 }, we have

0 ≤
𝑢𝑛

𝑖+1 − 𝑢𝑛
𝑖

∆𝑥
≤ 𝐿0.

Proof. The estimate (5.6) is a direct consequence of the definition of the scheme and the fact that 0 ≤ 𝑉 ≤ 𝑉max.
Let us show the second result by induction. The initialization is true by hypothesis. Assume that, for a given
𝑛, we have

0 ≤
𝑢𝑛

𝑖+1 − 𝑢𝑛
𝑖

∆𝑥
≤ 𝐿0 ∀𝑖 ∈ {0, · · · , 𝑁 − 1}.

We set 𝑢𝑛
𝑖 = 𝑢𝑛

𝑖+1 and

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 + ∆𝑡𝑉

(︃
I(𝑢̃𝑛

)(𝑥𝑖)
𝐼𝑔

)︃
·

In particular, we have 𝑢𝑛+1
𝑖 = 𝑢𝑛+1

𝑖+1 for all 𝑖 = 0, . . . , 𝑁 − 1. By monotonicity of the scheme, since 𝑢𝑛
𝑖 ≥ 𝑢𝑛

𝑖 , we
deduce that

𝑢𝑛+1
𝑖+1 = 𝑢𝑛+1

𝑖 ≥ 𝑢𝑛+1
𝑖 ∀𝑖 = 0, . . . , 𝑁 − 1.

In the same way, if we define 𝑢𝑛
𝑖 = 𝑢𝑛

𝑖+1 − 𝐿0∆𝑥 and

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 + ∆𝑡𝑉
(︂

I(𝑢̃𝑛)(𝑥𝑖)
𝐼𝑔

)︂
,

then we have 𝑢𝑛+1
𝑖 = 𝑢𝑛+1

𝑖+1 − 𝐿0∆𝑥 for all 𝑖 = 0, . . . , 𝑁 − 1 and 𝑢𝑛
𝑖 ≤ 𝑢𝑛

𝑖 . By monotonicity of the scheme, we
then get

𝑢𝑛+1
𝑖+1 − 𝐿0∆𝑥 = 𝑢𝑛+1

𝑖 ≤ 𝑢𝑛+1
𝑖 .

This ends the proof of the theorem. �
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We now give the convergence result, with the estimate of convergence. We first define

𝑄Δ
𝑇 = {(𝑡𝑛, 𝑥𝑖), 𝑡𝑛 = 𝑛∆𝑡, 𝑥𝑖 = 𝑎+ 𝑖∆𝑥, 𝑛 ∈ {0, . . . , 𝑁𝑇 }, 𝑖 ∈ {0, . . . , 𝑁}}

and
𝑄Δ

0 = {𝑥𝑖 = 𝑎+ 𝑖∆𝑥, 𝑖 ∈ {0, . . . , 𝑁}} .

Theorem 5.5 (Discrete-continuous error estimate for (1.1)). Assume that 𝑇 ≤ 1 and ∆𝑥 + ∆𝑡 ≤ 1. Assume
also that the CFL condition (5.5) is satisfied. Then, there exists a constant 𝐾 > 0, depending only on the
Lipschitz constant of 𝑢0 and on 𝑔, such that the error estimate between the continuous solution 𝑢 of (1.1) and
the discrete solution 𝑣 of (5.3) (with initial condition given by 𝑣0) is given by

sup
𝑄Δ

𝑇

|𝑢− 𝑣| ≤ 𝐾

(︂√
∆𝑡+

𝐵

𝐴
∆𝑥+𝑅𝐵 +

(︂
𝐴+

𝐴2

√
∆𝑡

)︂)︂
+ sup

𝑄Δ
0

|𝑢0 − 𝑣0|, (5.7)

if 𝐾
(︁√

∆𝑡+ 𝐵
𝐴 ∆𝑥+𝑅𝐵 +

(︁
𝐴+ 𝐴2

√
Δ𝑡

)︁)︁
≤ 1 and sup

𝑄Δ
0

|𝑢0 − 𝑣0| ≤ 1 and where

𝑅𝐵 =
∫︁ +∞

𝐵

𝑔(𝑧)d𝑧.

Remark 5.6. For example, if 𝑔 has compact support, B can be chosen large enough so that 𝑅𝐵 = 0 and we
can take 𝐴 of the order of

√
∆𝑥. In that case, we recover a estimate of order

√
∆𝑥+ ∆𝑡. If, we take 𝑔(𝑧) = 𝑒−𝑧,

then we can take 𝐵 = − ln(∆𝑥) and 𝐴 =
√

∆𝑥 and we get an estimate of order − ln(∆𝑥)
√

∆𝑥+ ∆𝑡.

Proof. The proof is inspired by the one of Crandall Lions [9], revisited by Alvarez et al. [1] and is an adaptation
of the comparison principle.

We define 𝜇 by
𝜇 = sup

𝑄Δ
𝑇

|𝑢(𝑡𝑛, 𝑥𝑖)− 𝑣𝑛
𝑖 |.

We want to prove that 𝜇 is bounded by 𝑓(∆𝑥,∆𝑡), 𝑓 being defined later. We first assume that 𝑢0(𝑥𝑖) ≥ 𝑣0
𝑖 and

we set
𝜇0 = sup

𝑄Δ
0

|𝑢0(𝑥𝑖)− 𝑣0
𝑖 | ≥ 0.

We define for 0 < 𝛼, 𝜀 ≤ 1 and 𝜎 > 0, the function

𝜓 : [0, 𝑇 ]× R×𝑄Δ
𝑇 → R

(𝑡, 𝑥, 𝑡𝑛, 𝑥𝑖) ↦→ 𝜓(𝑡, 𝑥, 𝑡𝑛, 𝑥𝑖)
,

by

𝜓(𝑡, 𝑥, 𝑡𝑛, 𝑥𝑖) = 𝑢(𝑡, 𝑥)− 𝑣(𝑡𝑛, 𝑥𝑖)−
|𝑡− 𝑡𝑛|2

2𝜀
− |𝑥− 𝑥𝑖|2

2𝜀
− 𝜎𝑡− 𝛼|𝑥|2 − 𝛼|𝑥𝑖|2.

This function has a maximum denoted by 𝑀𝜎
𝜀,𝛼. Indeed, 𝑢 is Lipschitz continuous then

|𝑢(𝑡, 𝑥)− 𝑢(𝑡, 0)| ≤ 𝐿0|𝑥|,

and since, 𝑇 ≤ 1,
|𝑢(𝑡, 𝑥)| ≤ 𝐿0|𝑥|+ 𝐶𝑡+ |𝑢0(0)| ≤ 𝐾(1 + |𝑥|). (5.8)

In the same way, using Theorem 5.4, we also have that

|𝑣(𝑡𝑛, 𝑥𝑖)| ≤ 𝐾(1 + |𝑥𝑖|). (5.9)
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Let us underline that the constant 𝐾 is not necessarily the same on each estimation.
This implies that the maximum 𝑀𝜎

𝜀,𝛼 is reached in a point denoted by (𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ). We now give some

estimates on the maximum point. We have

𝛼|𝑥⋆|+ 𝛼|𝑥⋆
𝑖 | ≤ 𝐾 (5.10)

and
|𝑥⋆ − 𝑥⋆

𝑖 | ≤ 𝐾𝜀 and |𝑡⋆ − 𝑡⋆𝑛| ≤ (𝐾 + 2𝜎)𝜀. (5.11)

Indeed, since (𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) is a maximum point of 𝜓, we have

𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) ≥ 𝜓(0, 0, 0, 0) ≥ 0.

Then we obtain, by (5.8) and (5.9), and using Young’s inequality that

𝛼|𝑥⋆|2 + 𝛼|𝑥⋆
𝑖 |2 ≤ 𝑢(𝑡⋆, 𝑥⋆)− 𝑢(0, 0)− 𝑣(𝑡⋆𝑛, 𝑥

⋆
𝑖 ) + 𝑣(0, 0)

≤ 𝐾(1 + |𝑥⋆|+ |𝑥⋆
𝑖 |) ≤ 𝐾 +

𝐾2

𝛼
+
𝛼

2
|𝑥⋆|2 +

𝛼

2
|𝑥⋆

𝑖 |2.

This implies (5.10) since 𝛼 ≤ 1.
Using that 𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥

⋆
𝑖 ) ≥ 𝜓(𝑡⋆, 𝑥⋆

𝑖 , 𝑡
⋆
𝑛, 𝑥

⋆
𝑖 ), (5.10) and the fact that 𝑢 is Lipschitz continuous, we get

|𝑥⋆ − 𝑥⋆
𝑖 |2

2𝜀
≤ 𝑢(𝑡⋆, 𝑥⋆)− 𝑢(𝑡⋆, 𝑥⋆

𝑖 )− 𝛼|𝑥⋆|2 + 𝛼|𝑥⋆
𝑖 |2

≤ 𝐾|𝑥⋆ − 𝑥⋆
𝑖 |+ 𝛼 (|𝑥⋆

𝑖 | − |𝑥⋆|)⏟  ⏞  
≤|𝑥⋆−𝑥⋆

𝑖 |

(|𝑥⋆|+ |𝑥⋆
𝑖 |) ≤ 𝐾|𝑥⋆ − 𝑥⋆

𝑖 |.

This implies the first inequality of (5.11). We obtain the second one in the same way, using that 𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) ≥

𝜓(𝑡⋆𝑛, 𝑥
⋆, 𝑡⋆𝑛, 𝑥

⋆
𝑖 ) and the fact that 𝑢 is Lipschitz continuous with respect to 𝑡. Inequality (5.10) can be strength-

ened to
𝛼|𝑥⋆|2 + 𝛼|𝑥⋆

𝑖 |2 ≤ 𝐾. (5.12)

Indeed, using (5.6) and (5.11), the facts that 𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) ≥ 𝜓(0, 0, 0, 0), 𝑢0(𝑥𝑖) ≥ 𝑣0

𝑖 , and that 𝑢 is Lipschitz
continuous with respect to 𝑥 and 𝑡, we obtain

𝛼|𝑥⋆|2 + 𝛼|𝑥⋆
𝑖 |2 ≤ 𝑢(𝑡⋆, 𝑥⋆)− 𝑢(0, 𝑥⋆

𝑖 ) + 𝑢(0, 𝑥⋆
𝑖 )− 𝑣(𝑡⋆𝑛, 𝑥

⋆
𝑖 ) ≤ 𝐾(|𝑥⋆ − 𝑥⋆

𝑖 |+ 𝑡⋆) +𝐾𝑡⋆𝑛 ≤ 𝐾.

We assume now that for 𝜎 large enough, we have either 𝑡⋆ = 0 or 𝑡⋆𝑛 = 0. We argue by contradiction and we
suppose that 𝑡⋆ and 𝑡⋆𝑛 are positive. Since 𝑢 is a sub-solution of (1.1), and 𝑢− 𝜑1 reaches a maximum point in
(𝑡⋆, 𝑥⋆), with 𝜑1 given by

𝜑1(𝑡, 𝑥) = 𝑣(𝑡⋆𝑛, 𝑥
⋆
𝑖 ) +

|𝑡− 𝑡⋆𝑛|2

2𝜀
+
|𝑥− 𝑥⋆

𝑖 |2

2𝜀
+ 𝜎𝑡+ 𝛼|𝑥|2 + 𝛼|𝑥⋆

𝑖 |2.

Then by definition of 𝐴-viscosity solution of (1.1), we have that,

𝜎 +
𝑡⋆ − 𝑡⋆𝑛
𝜀

≤ 𝑉

(︃
1
𝐼𝑔

(︃∫︁ 𝐴

0

𝜑1(𝑡⋆, 𝑥⋆ + 𝑧)− 𝜑1(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧 +
∫︁ +∞

𝐴

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧

)︃)︃

≤ 𝑉

(︂
1
𝐼𝑔

(︂∫︁ 𝐴

0

(︂
𝑥⋆ − 𝑥⋆

𝑖

𝜀
+

𝑧

2𝜀
+ 𝛼(2𝑥⋆ + 𝑧)

)︂
𝑔(𝑧)d𝑧

+
∫︁ +∞

𝐴

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧
)︂)︂

. (5.13)
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On the other hand, since 𝑡⋆𝑛 > 0, and (𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) is a maximum point of 𝜓, we have that for all 𝑥𝑖 ∈ 𝑄Δ,

𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) ≥ 𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛 −∆𝑡, 𝑥𝑖).

Then, for all 𝑥𝑖 ∈ 𝑄Δ, we obtain that,

𝑣(𝑡⋆𝑛 −∆𝑡, 𝑥𝑖)− 𝑣(𝑡⋆𝑛, 𝑥
⋆
𝑖 ) ≥ 𝜑2(𝑡⋆𝑛 −∆𝑡, 𝑥𝑖)− 𝜑2(𝑡⋆𝑛, 𝑥

⋆
𝑖 ).

where 𝜑2(𝑡, 𝑥) = −
(︁
|𝑡⋆−𝑡|2

2𝜀 + |𝑥⋆−𝑥|2
2𝜀 + 𝛼|𝑥⋆|2

)︁
. Since 𝑣𝑛

𝑖 is a solution of the discrete problem (5.3), then we
obtain, for 𝑥𝑖 = 𝑥⋆

𝑖

𝜑2(𝑡⋆𝑛, 𝑥
⋆
𝑖 )− 𝜑2(𝑡⋆𝑛 −∆𝑡, 𝑥⋆

𝑖 )
∆𝑡

≥ 𝑣(𝑡⋆𝑛, 𝑥
⋆
𝑖 )− 𝑣(𝑡⋆𝑛 −∆𝑡, 𝑥⋆

𝑖 )
∆𝑡

≥ 𝑉

(︂
1
𝐼𝑔

I
(︀
𝑣𝑛−1

)︀
(𝑥⋆

𝑖 )
)︂
.

That is
𝑡⋆ − 𝑡⋆𝑛
𝜀

+
∆𝑡
2𝜀

≥ 𝑉

(︂
1
𝐼𝑔

I
(︀
𝑣𝑛−1

)︀
(𝑥⋆

𝑖 )
)︂
.

Moreover, by (5.6), we have

𝑣(𝑡*𝑛 −∆𝑡, 𝑥𝑖)− 𝑣(𝑡*𝑛 −∆𝑡, 𝑥*𝑖 ) ≥ −𝑉max∆𝑡+ 𝑣(𝑡*𝑛, 𝑥𝑖)− 𝑣(𝑡*𝑛, 𝑥
*
𝑖 ).

This implies that (with ℐ defined in (5.5))

I(𝑣𝑛−1)(𝑥⋆
𝑖 ) ≥ I(𝑣𝑛)(𝑥⋆

𝑖 )− ℐ𝑉max∆𝑡

and so
𝑡⋆ − 𝑡⋆𝑛
𝜀

+
∆𝑡
2𝜀

≥ 𝑉

(︂
1
𝐼𝑔

I(𝑣𝑛)(𝑥⋆
𝑖 )
)︂
−𝐾∆𝑡. (5.14)

Subtracting inequality (5.14) to (5.13) and using the fact that 𝑉 is a Lipschitz continuous, we get

𝜎 ≤ 𝐾

(︃∫︁ 𝐴

0

⃒⃒⃒⃒
𝑥⋆ − 𝑥⋆

𝑖

𝜀
+

𝑧

2𝜀
+ 𝛼(2𝑥⋆ + 𝑧)

⃒⃒⃒⃒
𝑔(𝑧)d𝑧 +

∫︁ +∞

𝐵

⃒⃒⃒⃒
𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)

𝑧
𝑔(𝑧)

⃒⃒⃒⃒
d𝑧

)︃

+ 𝑉

(︃
1
𝐼 𝑔

∫︁ 𝐵

𝐴

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧

)︃
− 𝑉

(︂
I(𝑣𝑛)(𝑥⋆

𝑖 )
𝐼𝑔

)︂
+

∆𝑡
2𝜀

+𝐾∆𝑡.

(5.15)

Note that, by (5.10) and (5.11), we have∫︁ 𝐴

0

⃒⃒⃒⃒
𝑥⋆ − 𝑥⋆

𝑖

𝜀
+

𝑧

2𝜀
+ 𝛼(2𝑥⋆ + 𝑧)

⃒⃒⃒⃒
𝑔(𝑧)d𝑧 ≤ 𝐾

(︂
𝐴+

𝐴2

𝜀

)︂
and ∫︁ +∞

𝐵

⃒⃒⃒⃒
𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)

𝑧
𝑔(𝑧)

⃒⃒⃒⃒
d𝑧 ≤ 𝐿0𝑅𝐵 .

Hence inequality (5.15) becomes

𝜎 ≤ 𝑉

(︃
1
𝐼 𝑔

∫︁ 𝐵

𝐴

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧

)︃
− 𝑉

(︂
I(𝑣𝑛)(𝑥⋆

𝑖 )
𝐼𝑔

)︂
+𝐾

∆𝑡
𝜀

+𝐾𝑅𝐵 +𝐾

(︂
𝐴+

𝐴2

𝜀

)︂
· (5.16)
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Moreover, by (5.4), we have⃒⃒⃒⃒
⃒
∫︁ 𝐵

𝐴

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧 − I(𝑢(𝑡⋆, ·))(𝑥⋆)

⃒⃒⃒⃒
⃒ ≤ 𝐾𝐵

𝐴
∆𝑥,

hence

𝑉

(︃
1
𝐼 𝑔

∫︁ 𝐵

𝐴

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

𝑔(𝑧)d𝑧

)︃
≤ 𝑉

(︂
I(𝑢(𝑡⋆, ·))(𝑥⋆)

𝐼𝑔

)︂
+
𝐾𝐵

𝐴
∆𝑥. (5.17)

We now want to bound

𝑉

(︂
I(𝑢(𝑡⋆, ·))(𝑥⋆)

𝐼𝑔

)︂
− 𝑉

(︂
I(𝑣𝑛)(𝑥⋆

𝑖 )
𝐼𝑔

)︂
·

Since 𝜓(𝑡⋆, 𝑥⋆, 𝑡⋆𝑛, 𝑥
⋆
𝑖 ) ≥ 𝜓(𝑡⋆, 𝑥⋆ + 𝑧, 𝑡⋆𝑛, 𝑥

⋆
𝑖 + 𝑧), we get that

𝑢(𝑡⋆, 𝑥⋆ + 𝑧)− 𝑢(𝑡⋆, 𝑥⋆)
𝑧

≤ 𝑣(𝑡⋆𝑛, 𝑥
⋆
𝑖 + 𝑧)− 𝑣(𝑡⋆𝑛, 𝑥

⋆
𝑖 )

𝑧
+ 2𝛼(𝑥⋆ + 𝑥⋆

𝑖 + 𝑧).

This implies that

I(𝑢(𝑡⋆, ·))(𝑥⋆) ≤ I(𝑣𝑛)(𝑥⋆
𝑖 ) + 2𝛼(𝑥⋆ + 𝑥⋆

𝑖 )∆𝑥

⎛⎝1
2
𝑔(𝑁𝐴∆𝑥) +

1
2
𝑔(𝑁𝐵∆𝑥) +

𝑁𝐵−1∑︁
𝑗=𝑁𝐴+1

𝑔(𝑗∆𝑥)

⎞⎠
+ 2𝛼∆𝑥

⎛⎝1
2
𝑁𝐴∆𝑥.𝑔(𝑁𝐴∆𝑥) +

1
2
𝑁𝐵∆𝑥.𝑔(𝑁𝐵∆𝑥) +

𝑁𝐵−1∑︁
𝑗=𝑁𝐴+1

𝑗∆𝑥.𝑔(𝑗∆𝑥)

⎞⎠
≤ I(𝑣𝑛)(𝑥⋆

𝑖 ) +𝐾
√
𝛼

∫︁ 𝐵

𝐴

𝑔(𝑧)d𝑧 +𝐾𝛼

∫︁ 𝐵

𝐴

𝑧𝑔(𝑧)d𝑧 +𝐵(
√
𝛼+ 𝛼)∆𝑥

≤ I(𝑣𝑛)(𝑥⋆
𝑖 ) +𝐾(

√
𝛼+ 𝛼)(1 +𝐵∆𝑥).

We then get

𝑉

(︂
I(𝑢(𝑡⋆, ·))(𝑥⋆)

𝐼𝑔

)︂
− 𝑉

(︂
I(𝑣𝑛)(𝑥⋆

𝑖 )
𝐼𝑔

)︂
≤ 𝑉

(︂
I(𝑣𝑛)(𝑥⋆

𝑖 )
𝐼𝑔

+𝐾(
√
𝛼+ 𝛼)(1 +𝐵∆𝑥)

)︂
− 𝑉

(︂
I(𝑣𝑛)(𝑥⋆

𝑖 )
𝐼𝑔

)︂
≤ 𝐾(

√
𝛼+ 𝛼)(1 +𝐵∆𝑥)

≤ 𝐾
√
𝛼(1 +𝐵∆𝑥).

Injecting this in (5.16) and using (5.17), we get

𝜎 ≤ 𝐾
√
𝛼(1 +𝐵∆𝑥) +

𝐾𝐵

𝐴
∆𝑥+𝐾

∆𝑡
𝜀

+𝐾𝑅𝐵 +𝐾

(︂
𝐴+

𝐴2

𝜀

)︂
·

Let 𝜎⋆ = 𝐾
√
𝛼(1 +𝐵∆𝑥) + 𝐾𝐵

𝐴 ∆𝑥+𝐾Δ𝑡
𝜀 +𝐾𝑅𝐵 +𝐾

(︁
𝐴+ 𝐴2

𝜀

)︁
, then we have a contradiction for all 𝜎 ≥ 𝜎⋆,

and then 𝑡⋆ = 0 or 𝑡⋆𝑛 = 0 for all 𝜎 such that 𝜎 ≥ 𝜎⋆.
If 𝑡⋆ = 0, using (5.6), (5.11) and the fact that 𝑢0 is Lipschitz continuous, we obtain that

𝑀𝜎
𝜀,𝛼 ≤ 𝑢(0, 𝑥⋆)− 𝑣(𝑡⋆𝑛, 𝑥

⋆
𝑖 ) ≤ 𝑢0(𝑥⋆)− 𝑢0(𝑥⋆

𝑖 ) +𝐾𝑡⋆𝑛 + 𝜇0 ≤ 𝐾(|𝑥⋆ − 𝑥⋆
𝑖 |+ 𝑡⋆𝑛) + 𝜇0 ≤ 𝐾(1 + 𝜎)𝜀+ 𝜇0.

In the same way, if 𝑡⋆𝑛 = 0, we get

𝑀𝜎
𝜀,𝛼 ≤ 𝑢(𝑡⋆, 𝑥⋆)− 𝑣(0, 𝑥⋆

𝑖 ) ≤ 𝑢(𝑡⋆, 𝑥⋆)− 𝑢0(𝑥⋆
𝑖 ) + 𝜇0 ≤ 𝐾(|𝑥⋆ − 𝑥⋆

𝑖 |+ 𝑡⋆) + 𝜇0 ≤ 𝐾(1 + 𝜎)𝜀+ 𝜇0.
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We conclude that for all 𝜎⋆ ≤ 𝜎, we have

𝑀𝜎
𝜀,𝛼 ≤ 𝐾(1 + 𝜎)𝜀+ 𝜇0.

We then deduce that, for every (𝑡𝑛, 𝑥𝑖) ∈ 𝑄Δ
𝑇 , and for 𝜎 = 𝜎⋆ ≤ 1, we have that

𝑢(𝑡𝑛, 𝑥𝑖)− 𝑣(𝑡𝑛, 𝑥𝑖)−
(︂
𝐾
√
𝛼(1 +𝐵∆𝑥) +

𝐾𝐵

𝐴
∆𝑥+𝐾

∆𝑡
𝜀

+𝐾𝑅𝐵 +𝐾

(︂
𝐴+

𝐴2

𝜀

)︂)︂
𝑇 ≤ 𝐾𝜀+ 𝜇0.

Sending 𝛼, 𝜂 → 0, and choosing 𝜀 =
√

∆𝑡, we obtain that

𝜇 ≤ 𝐾

(︂√
∆𝑡+

𝐵

𝐴
∆𝑥+𝑅𝐵 +

(︂
𝐴+

𝐴2

√
∆𝑡

)︂)︂
+ 𝜇0,

provided that 𝜇0 ≤ 1 and ∆𝑥, ∆𝑡 small enough (so that 𝜎* ≤ 1).
Using the same arguments of Alvarez et al. ([1], Thm. 2), we easily deduce the result in the general case

(𝑢0(𝑥𝑖) ̸≥ 𝑣0
𝑖 ).This ends the proof. �

Remark 5.7. If 𝑇 ≥ 1, then since we have the estimation in each time interval of length 1, we then obtain
that

𝜇 ≤ 𝐾.𝑇

(︂√
∆𝑡+

𝐵

𝐴
∆𝑥+𝑅𝐵 +

(︂
𝐴+

𝐴2

√
∆𝑡

)︂)︂
+ 𝜇0.

5.3. Some numerical illustrations

In the numerical experiments below, we take the following discretization parameters ∆𝑡 = 0.005, 𝑇 = 0.5,
∆𝑥 = 0.05, 𝑏 = −𝑎 = 3 and 𝐵 = 10. For the velocity 𝑉 , inspired by [19] we consider the two following cases:

(Greenshield): 𝑉 (𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 ≤ 𝑥0

𝑉max

(︀
1−

(︀
𝑥0
𝑥

)︀𝑝)︀ if 𝑥 ∈ (𝑥0, 𝑥max)

𝑉max

(︁
1−

(︁
𝑥0

𝑥max

)︁𝑝)︁
if 𝑥 ≥ 𝑥max

(Underwood): 𝑉 (𝑥) =

⎧⎨⎩
0 if 𝑥 ≤ 𝑥0

𝑉max

(︀
1− 𝑒−(𝑥−𝑥0)

𝑝)︀
if 𝑥 ∈ (𝑥0, 𝑥max)

𝑉max

(︀
1− 𝑒−(𝑥max−𝑥0)

𝑝)︀
if 𝑥 ≥ 𝑥max

where 𝑥0 > 0, 𝑥max > 𝑥0 and 𝑉max are real parameters and 𝑝 ∈ N*. For the interpretation, we recall that 𝑥0

corresponds to the minimal distance between two successive cars and 𝑥max the distance up to which a driver will
not increase his speed. One can easily check that these two examples satisfy assumptions (H). In the sequel,
we take 𝑥0 = 0.2, 𝑥max = 10, 𝑝 = 1 and 𝑉max = 90.

For the weighting function 𝑔, we take 𝑔(𝑧) = 1
𝜂 𝑒
− 𝑧

𝜂 with 𝜂 > 0 so that 𝐼𝑔 = 1, see equation (5.3). It can be
also verified that it satisfies assumptions (H).
Riemann initial data. The initial data is given by

𝑢0(𝑥) =

{︃ 𝑥
𝜌𝐿

if 𝑥 < 0

𝑥
𝜌𝑅

if 𝑥 ≥ 0
⇔ 𝜌0(𝑥) =

{︃
𝜌𝐿 if 𝑥 < 0

𝜌𝑅 if 𝑥 ≥ 0
(5.18)

where 𝜌𝐿 > 0 and 𝜌𝑅 > 0 are the initial density on left and on the right respectively. On Figure 2, we represent
the density 𝜌 = 1

𝑢𝑥
at time 𝑡 = 0.2 for different values of 𝜂 ∈ {0.5, 1, 5} taking 𝜌𝐿 = 0.2 and 𝜌𝑅 = 0.8. We also

represent in dotted line the “local” case corresponding to the situation where we solve 𝑢𝑡 = 𝑉 (𝑢𝑥) (meaning
that the driver at position 𝑥 take only into account the car directly in front of him to adapt his speed). As we
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Figure 2. Density 𝜌 at time 𝑡 = 0.2 for different value of 𝜂 using Greenshield velocity (on
the left) and Underwood velocity (on the right) using (5.18) initial density with 𝜌𝐿 = 0.2 and
𝜌𝑅 = 0.8.

Figure 3. Density 𝜌 at time 𝑡 = 0.2 for different value of 𝜂 using Greenshield velocity (on
the left) and Underwood velocity (on the right) using (5.18) initial density with 𝜌𝐿 = 0.8 and
𝜌𝑅 = 0.2.

can see, and as we can expect, taking into account downstream traffic on a wider distance (meaning big 𝜂) leads
to a smoother repartition of the density and somehow delays the progression of the front.

Similarly, we represent on Figure 3 the comparison for 𝜂 ∈ {0.5, 1, 5} of the density 1
𝑢𝑥

at time 𝑡 = 0.2 taking
this time 𝜌𝐿 = 0.8 and 𝜌𝑅 = 0.2. We can see that, even thought the downstream density is lower, taking into
account downstream traffic on large distance has a strong impact on the result. In particular for large 𝜂, the
“decompression” is more uniform in the sense that the density on the left is almost flat.

Oscillating initial data. Let us consider a last situation with an oscillating initial density:

𝜌0(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝜌𝐿 = 0.5 if 𝑥 < −2

0.4 sin((𝑥+ 2)𝜋) + 0.5 if 𝑥 ∈ (−2, 2)

𝜌𝑅 = 0.5 if 𝑥 ≥ 2.

(5.19)

The associated initial state 𝑢0 is recovered by simple integration. On Figure 4, we represent the density profile
also at time 𝑡 = 0.2 for 𝜂 ∈ {0.5, 1, 5} and in dotted line the “local” case. Once again, we can remark that the
bigger 𝜂 is, the “smoother” the density is.
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Figure 4. Density 𝜌 at time 𝑡 = 0.2 for different value of 𝜂 using Greenshield velocity (on the
left) and Underwood velocity (on the right) using (5.19) initial density.

6. Concluding remarks

In this paper, we proposed and study a non-local traffic flow model starting from the microscopic model
to build the homogenized macroscopic model. Using Hamilton–Jacobi framework, we are able to prove the
convergence of the homogenization process, and existence and uniqueness of the solution for the macroscopic
problem. We believe that this approach is relevant in the context of traffic flow modeling since it enables to
consider more general assumptions (such as the regularity of 𝑉 ) compared to what we can find for models
based on conservation laws for which the analysis is more complicated and particular. Finally, we proposed and
analyzed a numerical scheme to solve the proposed non local macro-model, and illustrated with some results
the impact of the non-local aspect of the model. In future works, we would like to extend this model to traffic
flow on network.
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References

[1] O. Alvarez, E. Carlini, R. Monneau and E. Rouy, Convergence of a first order scheme for a non local eikonal equation. IMACS
J. Appl. Numer Math. 56 (2006) 1136–1146.

[2] S. Awatif, Equations d’hamilton-jacobi du premier ordre avec termes intégro-différentiels. Commun. Part. Differ. Equ. 16
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