@article{M2AN_2000__34_4_799_0,
author = {Ring, Wolfgang},
title = {Structural properties of solutions to total variation regularization problems},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {799--810},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {4},
mrnumber = {1784486},
zbl = {1018.49021},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_4_799_0/}
}
TY - JOUR AU - Ring, Wolfgang TI - Structural properties of solutions to total variation regularization problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 799 EP - 810 VL - 34 IS - 4 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_4_799_0/ LA - en ID - M2AN_2000__34_4_799_0 ER -
Ring, Wolfgang. Structural properties of solutions to total variation regularization problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 4, pp. 799-810. https://www.numdam.org/item/M2AN_2000__34_4_799_0/
[1] and , Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. | Zbl | MR
[2] , Analysis and Control of Nonlinear Infinite Dimensional Systems. Math. Sci. Engrg. 190 (1993). | Zbl | MR
[3] and , Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. | Zbl | MR
[4] and , Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376. | Zbl | MR | Numdam
[5] and , Analysis of regularized total variation penalty methods for denoising. Inverse Problems 12 (1996) 601-617. | Zbl | MR
[6] and , Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56 (1996) 1181-1192. | Zbl | MR
[7] and , Infinite-Dimensional Optimization and Convexity. Chicago Lectures in Math., The University of Chicago Press, Chicago and London (1983). | Zbl | MR
[8] and , Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | Zbl | MR
[9] and , Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (1977). | Zbl | MR
[10] , Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. 80 (1984). | Zbl | MR
[11] and , An active set strategy based on the augmented lagrantian formulation for image restauration. RAIRO Modél Math. Anal. Numér. 33 (1999) 1-21. | Zbl | MR | Numdam
[12] and , BV-type regularization methods for convoluted objects with edge-flat-grey scales. Inverse Problems 16 (2000) 909-928. | Zbl | MR
[13] and , Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optim. 19 (1998) 873-901. | Zbl | MR
[14] , Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. (to appear). | Zbl | MR
[15] , and , Nonlinear total variation based noise removal algorithm. Physica D 60 (1992) 259-268. | Zbl
[16] , Real and Complex Analysis, 3rd edn McGraw-Hill, New York-St Louis-San Francisco (1987). | Zbl | MR
[17] and , Iterative methods for total variation denoising. SIAM J. Sci. Comp. 17 (1996) 227-238. | Zbl | MR
[18] , Weakly Differentiable Functions. Grad. Texts in Math. 120 (1989). | Zbl | MR





