@article{COCV_1997__2__359_0,
author = {Chavent, G. and Kunisch, K.},
title = {Regularization of linear least squares problems by total bounded variation},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {359--376},
year = {1997},
publisher = {EDP Sciences},
volume = {2},
mrnumber = {1483764},
zbl = {0890.49010},
language = {en},
url = {https://www.numdam.org/item/COCV_1997__2__359_0/}
}
TY - JOUR AU - Chavent, G. AU - Kunisch, K. TI - Regularization of linear least squares problems by total bounded variation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1997 SP - 359 EP - 376 VL - 2 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_1997__2__359_0/ LA - en ID - COCV_1997__2__359_0 ER -
%0 Journal Article %A Chavent, G. %A Kunisch, K. %T Regularization of linear least squares problems by total bounded variation %J ESAIM: Control, Optimisation and Calculus of Variations %D 1997 %P 359-376 %V 2 %I EDP Sciences %U https://www.numdam.org/item/COCV_1997__2__359_0/ %G en %F COCV_1997__2__359_0
Chavent, G.; Kunisch, K. Regularization of linear least squares problems by total bounded variation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 2 (1997), pp. 359-376. https://www.numdam.org/item/COCV_1997__2__359_0/
[1] , : Applied NonlinearAnalysis, Wiley-Interscience, New York, 1984. | Zbl | MR
[2] : Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1987. | Zbl | MR
[3] , , : Regularization by functions of bounded variation and applications to image enhancement, preprint. | MR | Zbl
[4] , : Convergence of Tikhonov regularization for constrained ill-posed inverse problems, Inverse Problems, 10 ( 1994), 63-76. Boston, 1985. | Zbl | MR
[5] , : Finite Elements, Methods for Navier-Stokes Equations, Springer, Berlin, 1984. | Zbl | MR
[6] : Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. | Zbl | MR
[7] : The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984. | Zbl | MR
[8] : Inverse und schlechtgestellte Probleme, Teubner, Stuttgart, 1989. | Zbl | MR
[9] : Sobolev Spaces, Springer, Berlin, 1985. | MR
[10] : Real and Complex Analysis, McGraw Hill, London, 1970. | Zbl
[11] , , : Nonlinear total variation based noise removal algorithm, Physica D, 60 ( 1992), 259-268. | Zbl
[12] : Mathematical Problems in Plasticity, Gauthier-Villars, Kent, 1985. | MR
[13] , : Iterative methods for total variation denoising, preprint. | Zbl | MR






