Home
 
  • Journals
  • Seminars
  • Conferences
  • Books
  • Lecture notes
  • Theses
  • Authors
  • Journals
  • Seminars
  • Conferences
  • Books
  • Lecture notes
  • Theses
  • Authors
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Mots-clés
  • Full text
  • Previous
  • Journal de la société française de statistique
  • Volume 161 (2020)
  • no. 1
  • Next

Causality

Table of contents


Causality: a special issue of Journal de la Société Française de Statistique (editorial)
Benkeser, David;  Chambaz, Antoine;  van der Laan, Mark J.
p. 1-3

Prometheus unbound or Paradise regained: the concept of Causality in the contemporary AI-Data Science debate
Starmans, Richard
p. 4-41

Simpson’s paradox, a tale of causality
Chambaz, Antoine;  Drouet, Isabelle
p. 42-66

A Primer on Causality in Data Science
Saddiki, Hachem;  Balzer, Laura B.
p. 67-90

Identification in Causal Models With Hidden Variables
Shpitser, Ilya
p. 91-119

Paradoxes in instrumental variable studies with missing data and one-sided noncompliance
Kennedy, Edward H.;  Small, Dylan S.
p. 120-134

Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity
DiazOrdaz, Karla;  Daniel, Rhian;  Kreif, Noemi
p. 135-163

Assessing trends in vaccine efficacy by pathogen genetic distance
Benkeser, David;  Juraska, Michal;  Gilbert, Peter B.
p. 164-175

Efficient Principally Stratified Treatment Effect Estimation in Crossover Studies with Absorbent Binary Endpoints
Luedtke, Alex;  Wu, Jiacheng
p. 176-200

A Ride in Targeted Learning Territory
Benkeser, David;  Chambaz, Antoine
p. 201-286
  • About
  • Help
  • Legal notice
  • Contact
 

Published by

 

Supported by

 
 

Partner of