The basic framework of domain -calculus was formulated in [39] more than ten years ago. This paper provides an improved formulation of a fragment of the -calculus without function space or powerdomain constructions, and studies some open problems related to this -calculus such as decidability and expressive power. A class of language equations is introduced for encoding -formulas in order to derive results related to decidability and expressive power of non-trivial fragments of the domain -calculus. The existence and uniqueness of solutions to this class of language equations constitute an important component of this approach. Our formulation is based on the recent work of Leiss [23], who established a sophisticated framework for solving language equations using Boolean automata (a.k.a. alternating automata [12, 35]) and a generalized notion of language derivatives. Additionally, the early notion of even-linear grammars is adopted here to treat another fragment of the domain -calculus.
Keywords: domain theory, mu-calculus, formal languages, boolean automata
@article{ITA_2003__37_4_337_0,
author = {Zhang, Guo-Qiang},
title = {Domain mu-calculus},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {337--364},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {4},
doi = {10.1051/ita:2003023},
mrnumber = {2053031},
zbl = {1038.03038},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003023/}
}
TY - JOUR AU - Zhang, Guo-Qiang TI - Domain mu-calculus JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 337 EP - 364 VL - 37 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003023/ DO - 10.1051/ita:2003023 LA - en ID - ITA_2003__37_4_337_0 ER -
%0 Journal Article %A Zhang, Guo-Qiang %T Domain mu-calculus %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 337-364 %V 37 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003023/ %R 10.1051/ita:2003023 %G en %F ITA_2003__37_4_337_0
Zhang, Guo-Qiang. Domain mu-calculus. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 4, pp. 337-364. doi: 10.1051/ita:2003023
[1] , Domain theory in logical form. Ann. Pure Appl. Logic 51 (1991) 1-77. | Zbl | MR
[2] and, Domain theory. Clarendon Press, Handb. Log. Comput. Sci. 3 (1995) 1-168. | MR
[3] , A domain equation for bisimulation. Inf. Comput. 92 (1991) 161-218. | Zbl | MR
[4] , The mu-calculus alternation-depth hierarchy is strict on binary trees. RAIRO Theoret. Informatics Appl. 33 (1999) 329-339. | Zbl | MR | Numdam
[5] and, On a family of linear grammars. Inf. Control 7 (1964) 283-291. | Zbl | MR
[6] and, Generalizations of regular events. Inf. Control 8 (1965) 56-63. | Zbl | MR
[7] and, Equational axioms for regular sets. Technical Report 9101, Stevens Institute of Technology (1991). | Zbl
[8] and, Towards an infinitary logic of domains: Abramsky logic for transition systems. Inf. Comput. 155 (1999) 170-201. | Zbl | MR
[9] , Simplifying the modal mu-calculus alternation hierarchy. Lecture Notes in Comput. Sci. 1373 (1998) 39-49. | Zbl | MR
[10] , A semantically based proof system for partial correctness and deadlock in CSP, in Proceedings, Symposium on Logic in Computer Science. Cambridge, Massachusetts (1986) 58-65.
[11] and, On equations for regular languages, finite automata, and sequential networks. Theor. Comput. Sci. 10 (1980) 19-35. | Zbl | MR
[12] , and, Alternation. Journal of the ACM 28 (1981) 114-133. | Zbl | MR
[13] , Completeness of Park induction. Theor. Comput. Sci. 177 (1997) 217-283 (MFPS'94). | Zbl
[14] , Alternating finite automata and related problems. Ph.D. thesis, Department of Mathematics and Computer Science, Kent State University (1991).
[15] , and, Constructions for alternating finite automata. Int. J. Comput. Math. 35 (1990) 117-132. | Zbl
[16] and, Semantic domains. Jan van Leeuwen edn., Elsevier, Handb. Theoretical Comput. Sci. B (1990) 633-674. | Zbl | MR
[17] and, On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. Lecture Notes in Comput. Sci. (CONCUR'96) 1119 (1996) 263-277.
[18] , Disjunctive program analysis for algebraic data types. ACM Trans. Programming Languages and Systems 19 (1997) 752-804.
[19] , Stone Spaces. Cambridge University Press (1982). | Zbl | MR
[20] , Results on the propositional mu-calculus. Theor. Comput. Sci. 27 (1983) 333-354. | Zbl | MR
[21] , A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110 (1994) 366-390. | Zbl | MR
[22] , Succinct representation of regular languages by Boolean automata. Theor. Comput. Sci. 13 (1981) 323-330. | Zbl | MR
[23] , Language Equations. Monographs in Computer Science, Springer-Verlag, New York (1999). | Zbl | MR
[24] , -definable sets of integers. J. Symb. Log. 58 (1993) 291-313. | Zbl | MR
[25] , Fixed points vs. infinite generation. IEEE Computer Press Logic in Computer Science (1988) 402-409.
[26] , Fixed point characterization of infinite behaviour of finite state systems. Theor. Comput. Sci. 189 (1997) 1-69. | Zbl | MR
[27] , Automaton representation of linear conjunctive languages. Proceedings of DLT 2002, Lecture Notes in Comput. Sci. 2450 (2003) 393-404. | Zbl | MR
[28] , On the closure properties of linear conjunctive languages. Theor. Comput. Sci. 299 (2003) 663-685. | Zbl | MR
[29] , Concurrency and automata on infinite sequences. Lecture Notes in Comput. Sci. 154 (1981) 561-572. | Zbl
[30] , The Pisa Notes. Department of Computer Science, University of Edinburgh (1981).
[31] , A powerdomain construction. SIAM J. Computing 5 (1976) 452-487. | Zbl | MR
[32] , A decidable mu-calculus: Preliminary report, Proc. of IEEE 22nd Annual Symposium on Foundations of Computer Science (1981) 421-427.
[33] , On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operator. Hist. Philos. Logic 12 (1991) 225-233 (English translation of the original paper in 1930). | Zbl | MR
[34] and, Finite automata and their decision problems. IBM J. Res. 3 (1959) 115-125. | Zbl | MR
[35] , Alternating automata and program verification. Computer Science Today - Recent Trends and Developments, Lecture Notes in Comput. Sci. 1000 (1995) 471-485.
[36] , Completeness of Kozen’s axiomatisation of the propositional -calculus. Inf. Comput. 157 (2000) 142-182. | Zbl
[37] , The Formal Semantics of Programming Languages. MIT Press (1993). | Zbl | MR
[38] , Regular Languages. Handbook of Formal Languages, Rozenberg and Salomaa, Springer-Verlag (1997) 41-110. | MR
[39] , Logic of Domains. Birkhauser, Boston (1991). | Zbl | MR
Cité par Sources :





