@article{ITA_1999__33_4-5_329_0,
author = {Arnold, Andr\'e},
title = {The $\mu $-calculus alternation-depth hierarchy is strict on binary trees},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {329--339},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {4-5},
mrnumber = {1748659},
zbl = {0945.68118},
language = {en},
url = {https://www.numdam.org/item/ITA_1999__33_4-5_329_0/}
}
TY - JOUR AU - Arnold, André TI - The $\mu $-calculus alternation-depth hierarchy is strict on binary trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 329 EP - 339 VL - 33 IS - 4-5 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1999__33_4-5_329_0/ LA - en ID - ITA_1999__33_4-5_329_0 ER -
%0 Journal Article %A Arnold, André %T The $\mu $-calculus alternation-depth hierarchy is strict on binary trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 329-339 %V 33 %N 4-5 %I EDP Sciences %U https://www.numdam.org/item/ITA_1999__33_4-5_329_0/ %G en %F ITA_1999__33_4-5_329_0
Arnold, André. The $\mu $-calculus alternation-depth hierarchy is strict on binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 329-339. https://www.numdam.org/item/ITA_1999__33_4-5_329_0/
[1] , Logical definability of fixed points. Theoret. Comput Sci. 61 (1988) 289-297. | Zbl | MR
[2] and , The metric space of infinite trees. Algebraic and topological properties. Fund. Inform. 4 (1980) 445-476. | Zbl | MR
[3] and , Fixed-point characterization of büchi automata on infinite trees. J. Inf. Process. Cybern. EIK 26 (1990). | Zbl
[4] and , Fixed point characterization of weak monadic logic definable sets of trees, M. Nivat and A. Podelski, Eds., Tree automata and Languages. Elsevier (1992) 159-188. | Zbl | MR
[5] , Fixpoint alternation: Arithmetic, transition Systems, and the binary tree, this issue. | Zbl | Numdam
[6] , The modal mu-calculus alternation hierarchy is strict, U. Montanari and V. Sassone, Eds., in Proc. CONCUR '96, Lecture Notes in Comput. Sci. 1119 (1996) 233-246. | MR
[7] , Simplifying the modal mu-calculus alternation hierarchy, M. Morvan, C. Meinel and D. Krob, Eds., in Proc. STACS '98, Lecture Notes in Comput. Sci. 1373 (1998) 39-49. | Zbl | MR
[8] and , Tree automata, mu-calculus and determinacy, in Proc. FOCS '91. IEEE Computer Society Press (1991) 368-377.
[9] and , Trees, automata and games, in Proc. 14th ACM Symp. on the Theory of Computing (1982) 60-65.
[10] , A hierarchy theorem for the mu-calculus, F. Meyer auf der Heide and B. Monien, Eds., in Proc. ICALP '96, Lecture Notes in Comput. Sci. 1099 (1996) 87-109. | Zbl | MR
[11] , Hierarchies of weak automata and weak monadic formulas. Theoret. Comput. Sci. 83 (1991) 323-335. | Zbl | MR
[12] , and , Alternating automata, the weak monadic theory of the tree and its complexity. Theoret Comput. Sci. 97 (1992) 233-244. | Zbl | MR
[13] and , Alternating automata on infinite trees, Theoret. Comput. Sci. 54 (1987) 267-276. | Zbl | MR
[14] , On fixed point clones, L. Kott, Ed., in Proc. 13th ICALP, Lecture Notes in Comput. Sci. 226 (1986) 464-473. | Zbl | MR
[15] , Fixed points characterization of infinite behaviour of finite state Systems. Theoret. Comput. Sci. 189 (1997) 1-69. | Zbl
[16] , A hierarchy of sets of infinite trees, A. B. Cremers and H. P. Kriegel, Eds., Theoret. Comput. Sci., Lecture Notes in Comput. Sci. 145 (1983) 335-342. | Zbl
[17] , Monadic second-order logic on tree-like structures, C. Puech and R. Reischuk, Eds., in Proc. STACS '96, Lecture Notes in Comput. Sci. 1046 (1996) 401-414. | MR





