Géométrie et Topologie, Théorie des groupes
Asymptotic invariants of lattices in locally compact groups
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 375-415

The aim of this work is to understand some of the asymptotic properties of sequences of lattices in a fixed locally compact group. In particular we will study the asymptotic growth of the Betti numbers of the lattices renormalized by the covolume and the rank gradient, the minimal number of generators also renormalized by the covolume. For doing so we will consider the ultraproduct of the sequence of actions of the locally compact group on the coset spaces and we will show how the properties of one of its cross sections are related to the asymptotic properties of the lattices.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.417

Carderi, Alessandro 1

1 A.C., Institut für Algebra und Geometrie, KIT, 76128 Karlsruhe, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_375_0,
     author = {Carderi, Alessandro},
     title = {Asymptotic invariants of lattices in locally compact groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {375--415},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     doi = {10.5802/crmath.417},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.417/}
}
TY  - JOUR
AU  - Carderi, Alessandro
TI  - Asymptotic invariants of lattices in locally compact groups
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 375
EP  - 415
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.417/
DO  - 10.5802/crmath.417
LA  - en
ID  - CRMATH_2023__361_G1_375_0
ER  - 
%0 Journal Article
%A Carderi, Alessandro
%T Asymptotic invariants of lattices in locally compact groups
%J Comptes Rendus. Mathématique
%D 2023
%P 375-415
%V 361
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.417/
%R 10.5802/crmath.417
%G en
%F CRMATH_2023__361_G1_375_0
Carderi, Alessandro. Asymptotic invariants of lattices in locally compact groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 375-415. doi: 10.5802/crmath.417

[1] Aaserud, Andreas Næs; Popa, Sorin Approximate equivalence of group actions, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 4, pp. 1201-1237 | DOI | MR | Zbl

[2] Abels, Herbert Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., Volume 212 (1974), pp. 1-19 | DOI | MR | Zbl

[3] Abels, Herbert A universal proper G-space, Math. Z., Volume 159 (1978) no. 2, pp. 143-158 | DOI | MR | Zbl

[4] Abért, Miklós; Bergeron, Nicolas; Biringer, Ian; Gelander, Tsachik Convergence of normalized Betti numbers in nonpositive curvature (2018) (https://arxiv.org/abs/1811.02520v1)

[5] Abért, Miklós; Bergeron, Nicolas; Biringer, Ian; Gelander, Tsachik; Nikolov, Nikolay; Raimbault, Jean; Samet, Iddo On the growth of L 2 -invariants for sequences of lattices in Lie groups, Ann. Math., Volume 185 (2017) no. 3, pp. 711-790 | MR | Zbl

[6] Abért, Miklós; Gelander, Tsachik; Nikolov, Nikolay Rank, combinatorial cost, and homology torsion growth in higher rank lattices, Duke Math. J., Volume 166 (2017) no. 15, pp. 2925-2964 | MR | Zbl

[7] Abért, Miklós; Nikolov, Nikolay Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc., Volume 14 (2012) no. 5, pp. 1657-1677 | MR | Zbl

[8] Abért, Miklós; Tóth, László Márton Uniform rank gradient, cost and local-global convergence, Trans. Am. Math. Soc., Volume 373 (2020) no. 4, pp. 2311-2329 | DOI | MR | Zbl

[9] Ballmann, Werner; Gromov, Mikhael; Schroeder, Viktor Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser, 1985 | DOI | Zbl

[10] Bergeron, Nicolas; Gaboriau, Damien Asymptotique des nombres de Betti, invariants l 2 et laminations, Comment. Math. Helv., Volume 79 (2004) no. 2, pp. 362-395 | DOI | MR | Zbl

[11] Carderi, Alessandro Ultraproducts, weak equivalence and sofic entropy (2015) (https://arxiv.org/abs/1509.03189)

[12] Carderi, Alessandro On Farber sequences in locally compact groups (2018) (https://arxiv.org/abs/1812.05010)

[13] Carderi, Alessandro; Gaboriau, Damien; de la Salle, Mickael Non-standard limits of graphs and some orbit equivalence invariants, Ann. Henri Lebesgue, Volume 4 (2021), pp. 1235-1293 | DOI | MR | Zbl

[14] Carderi, Alessandro; Le Maître, François Orbit full groups for locally compact groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 4, pp. 2321-2349 | DOI | MR | Zbl

[15] do Carmo, Manfredo Perdigão Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992 (translated from the second Portuguese edition by Francis Flaherty) | MR | Zbl

[16] Elek, Gábor; Szabó, Endre Hyperlinearity, essentially free actions and L 2 -invariants. The sofic property, Math. Ann., Volume 332 (2005) no. 2, pp. 421-441 | DOI | MR | Zbl

[17] Farber, Michael Geometry of growth: approximation theorems for L 2 invariants, Math. Ann., Volume 311 (1998) no. 2, pp. 335-375 | DOI | MR | Zbl

[18] Forrest, Peter On the virtual groups defined by ergodic actions of R n and Z n , Adv. Math., Volume 14 (1974), pp. 271-308 | DOI | MR | Zbl

[19] Fremlin, David H. Measure theory. Vol. 1-2, 4, Torres Fremlin, Colchester, 2001-2003

[20] Gaboriau, Damien Coût des relations d’équivalence et des groupes, Invent. Math., Volume 139 (2000) no. 1, pp. 41-98 | DOI | Zbl

[21] Gaboriau, Damien Invariants l 2 de relations d’équivalence et de groupes, Publ. Math., Inst. Hautes Étud. Sci., Volume 95 (2002), pp. 93-150 | DOI | Zbl

[22] Gao, Su Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), 293, CRC Press, 2009 | Zbl

[23] Gelander, Tsachik Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | MR | Zbl

[24] Gelander, Tsachik; Levit, Arie Invariant random subgroups over non-Archimedean local fields, Math. Ann., Volume 372 (2018) no. 3-4, pp. 1503-1544 | DOI | MR | Zbl

[25] Gluškov, Viktor M. The structure of locally compact groups and Hilbert’s fifth problem, Trans. Am. Math. Soc., Volume 15 (1960), pp. 55-93 | MR | Zbl

[26] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002 | Zbl

[27] Kyed, David; Petersen, Henrik Densing; Vaes, Stefaan L 2 -Betti numbers of locally compact groups and their cross section equivalence relations, Trans. Am. Math. Soc., Volume 367 (2015) no. 7, pp. 4917-4956 | DOI | MR | Zbl

[28] Levit, Arie On Benjamini–Schramm limits of congruence subgroups, Isr. J. Math., Volume 239 (2020) no. 1, pp. 59-73 | DOI | MR | Zbl

[29] Levitt, Gilbert On the cost of generating an equivalence relation, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 6, pp. 1173-1181 | DOI | MR | Zbl

[30] Lück, Wolfgang Approximating L 2 -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | MR | Zbl

[31] Lück, Wolfgang Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects (Progress in Mathematics), Volume 248, Birkhäuser, 2005, pp. 269-322 | MR | Zbl

[32] Lück, Wolfgang Approximating L 2 -invariants by their classical counterparts, EMS Surv. Math. Sci., Volume 3 (2016) no. 2, pp. 269-344 | DOI | MR | Zbl

[33] Lück, Wolfgang; Meintrup, David On the universal space for group actions with compact isotropy, Geometry and topology: Aarhus (1998) (Contemporary Mathematics), Volume 258, American Mathematical Society, 2000, pp. 293-305 | MR | Zbl

[34] Mackey, George W. Point realizations of transformation groups, Ill. J. Math., Volume 6 (1962), pp. 327-335 | MR | Zbl

[35] Petersen, Henrik Densing L 2 -Betti numbers of locally compact groups, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 9-10, pp. 339-342 | DOI | MR | Zbl

[36] Petersen, Henrik Densing; Sauer, Roman; Thom, Andreas L 2 -Betti numbers of totally disconnected groups and their approximation by Betti numbers of lattices, J. Topol., Volume 11 (2018) no. 1, pp. 257-282 | DOI | MR | Zbl

[37] Thurston, William P. Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997 | DOI | Zbl

[38] Tomatsu, Reiji Ultraproducts of crossed product von Neumann algebras, Ill. J. Math., Volume 61 (2017) no. 3-4, pp. 275-286 | MR | Zbl

[39] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | DOI | Zbl

Cité par Sources :