[Sur l'interpolation du type d'Ingham dans ]
Let and be 0-symmetric convex bodies in . We are interested in determining conditions under which every set Λ satisfying is a set of interpolation for the Paley–Wiener space of functions with spectrum in . Some sufficient and necessary conditions are given which, in particular, imply sharp asymptotic estimates for the -balls.
Soient et deux ensembles convexes 0-symétriques (symétriques par rapport à 0). A quelle condition tout ensemble Λ vérifiant est-il un ensemble d'interpolation pour les fonctions localement à spectre dans ? On donne des conditions nécessaires et des conditions suffisantes pour qu'il en soit ainsi, et on en dérive des estimations précises pour les boules quand .
Accepté le :
Publié le :
Olevskii, Alexander 1 ; Ulanovskii, Alexander 2
@article{CRMATH_2010__348_13-14_807_0,
author = {Olevskii, Alexander and Ulanovskii, Alexander},
title = {On {Ingham-type} interpolation in $ {\mathbb{R}}^{n}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {807--810},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {13-14},
doi = {10.1016/j.crma.2010.06.007},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.06.007/}
}
TY - JOUR
AU - Olevskii, Alexander
AU - Ulanovskii, Alexander
TI - On Ingham-type interpolation in $ {\mathbb{R}}^{n}$
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 807
EP - 810
VL - 348
IS - 13-14
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.06.007/
DO - 10.1016/j.crma.2010.06.007
LA - en
ID - CRMATH_2010__348_13-14_807_0
ER -
%0 Journal Article
%A Olevskii, Alexander
%A Ulanovskii, Alexander
%T On Ingham-type interpolation in $ {\mathbb{R}}^{n}$
%J Comptes Rendus. Mathématique
%D 2010
%P 807-810
%V 348
%N 13-14
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.06.007/
%R 10.1016/j.crma.2010.06.007
%G en
%F CRMATH_2010__348_13-14_807_0
Olevskii, Alexander; Ulanovskii, Alexander. On Ingham-type interpolation in $ {\mathbb{R}}^{n}$. Comptes Rendus. Mathématique, Tome 348 (2010) no. 13-14, pp. 807-810. doi: 10.1016/j.crma.2010.06.007
[1] An Introduction to the Geometry of Numbers, Springer-Verlag, 1971
[2] Some trigonometrical inequalities with applications in the theory of series, Math. Z., Volume 41 (1936) no. 1, pp. 367-379
[3] Fonctions pseudo-périodiques dans (French), Jerusalem, 1960, Jerusalem Academic Press/Pergamon, Jerusalem/Oxford (1961), pp. 274-281
[4] Pseudopériodicité et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (3), Volume 79 (1962), pp. 93-150
[5] Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, 2005
Cité par Sources :





