@article{COCV_1998__3__163_0,
author = {Asch, M. and Lebeau, G.},
title = {Geometrical aspects of exact boundary controllability for the wave equation. {A} numerical study},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {163--212},
publisher = {EDP Sciences},
volume = {3},
year = {1998},
mrnumber = {1624783},
zbl = {1052.93501},
language = {en},
url = {https://www.numdam.org/item/COCV_1998__3__163_0/}
}
TY - JOUR AU - Asch, M. AU - Lebeau, G. TI - Geometrical aspects of exact boundary controllability for the wave equation. A numerical study JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1998 SP - 163 EP - 212 VL - 3 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_1998__3__163_0/ LA - en ID - COCV_1998__3__163_0 ER -
%0 Journal Article %A Asch, M. %A Lebeau, G. %T Geometrical aspects of exact boundary controllability for the wave equation. A numerical study %J ESAIM: Control, Optimisation and Calculus of Variations %D 1998 %P 163-212 %V 3 %I EDP Sciences %U https://www.numdam.org/item/COCV_1998__3__163_0/ %G en %F COCV_1998__3__163_0
Asch, M.; Lebeau, G. Geometrical aspects of exact boundary controllability for the wave equation. A numerical study. ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 163-212. https://www.numdam.org/item/COCV_1998__3__163_0/
[1] : Contrôle analytique de l'équation des ondes sur des surfaces de révolution, PhD thesis, École Polytechnique, 1997. | Zbl
[2] : Control and stabilization of wave propagation problems on complex geometries, in preparation, 1998.
[3] , : Une étude numérique du contrôle exacte du système de l'élasticité linéaire en dimension deux, Technical report 98-05, Laboratoire de Mathématiques, Université Paris-Sud, 1998.
[4] , , : Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM Journal of Control and Optimization, 30, 1992, 1024-1065. | Zbl | MR
[5] , : Idetifications numériques de contrôles distribués pour l'équation des ondes, C. R. Acad. Sci. Paris Série I, 322, 1996, 779-784. | Zbl | MR
[6] : Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation, Journal of Computational Physics, 103, 1992, 189-221. | Zbl | MR
[7] , , : A numerical approach to the exact controllability of the wave equation (I) Dirichlet controls: description of the numerical methods, Japan Journal of Applied Mathematics, 7, 1990, 1-76. | Zbl | MR
[8] : Controlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome I, Collection RMA, Masson, 1988. | Zbl
[9] , : Boundary controllability of a linear hybrid System arising in the control of noise, SIAM Journal of Control and Optimization, 35, 1997, 1614-1637. | Zbl | MR
[10] : Numerical solution of differential equations, Dover Publications Inc., 1954. | Zbl | MR






