@article{CM_1992__83_3_347_0,
author = {Borel, Armand and Prasad, Gopal},
title = {Values of isotropic quadratic forms at $S$-integral points},
journal = {Compositio Mathematica},
pages = {347--372},
publisher = {Kluwer Academic Publishers},
volume = {83},
number = {3},
year = {1992},
mrnumber = {1175945},
zbl = {0777.11008},
language = {en},
url = {https://www.numdam.org/item/CM_1992__83_3_347_0/}
}
TY - JOUR AU - Borel, Armand AU - Prasad, Gopal TI - Values of isotropic quadratic forms at $S$-integral points JO - Compositio Mathematica PY - 1992 SP - 347 EP - 372 VL - 83 IS - 3 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1992__83_3_347_0/ LA - en ID - CM_1992__83_3_347_0 ER -
Borel, Armand; Prasad, Gopal. Values of isotropic quadratic forms at $S$-integral points. Compositio Mathematica, Volume 83 (1992) no. 3, pp. 347-372. https://www.numdam.org/item/CM_1992__83_3_347_0/
[A] : Non-square-integrable cohomology of arithmetic groups, Duke Math. J. 47 (1980), 435-449. | Zbl | MR
[B] : Linear Algebraic Groups, Benjamin, New York 1969; 2nd edn., GTM 126, Springer-Verlag 1991. | Zbl | MR
[BP] et : Valeurs de formes quadratiques aux points entiers, C. R. Acad. Sci. Paris 307 (1988), 217-220. | Zbl | MR
[D] , A simple proof of Borel's density theorem, Math. Zeitschr. 174 (1980), 81-94. | Zbl | MR
[DM] and : Values of quadratic forms at primitive integral points, Inv. Math. 98 (1989), 405-425. | Zbl | MR
[M] : Discrete groups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups, Symposium in honor of A. Selberg, Oslo 1987, Academic Press (1989), 377-398. | Zbl | MR
[P] : The problem of strong approximation and the Kneser-Tits conjecture, Math. USSR Izv. 3 (1969), 1139-1147;Addendum, ibid. 4(1970), 784-786. | Zbl
[RR] and : On a diophantine inequality concerning quadratic forms, Göttingen Nachr. Mat. Phys. Klasse (1968), 251-262. | Zbl | MR
[Rt] : Raghunathan's topological conjecture and distribution of unipotent flows Duke Math. J. 63 (1991), 235-280. | Zbl | MR
[W] , Adeles and algebraic groups, Progress in Mathematics 23, Birkhäuser, Boston, 1982. | Zbl | MR






