@article{CM_1990__73_1_31_0,
author = {Jones, John W.},
title = {$p$-adic heights for semi-stable abelian varieties},
journal = {Compositio Mathematica},
pages = {31--56},
year = {1990},
publisher = {Kluwer Academic Publishers},
volume = {73},
number = {1},
mrnumber = {1042453},
zbl = {0743.14031},
language = {en},
url = {https://www.numdam.org/item/CM_1990__73_1_31_0/}
}
Jones, John W. $p$-adic heights for semi-stable abelian varieties. Compositio Mathematica, Tome 73 (1990) no. 1, pp. 31-56. https://www.numdam.org/item/CM_1990__73_1_31_0/
1 : "Le groupe de Brauer III", Dix exposes sur la cohomologie des schemes. | Zbl
2 : Iwasawa L-functions of multiplicative Abelian varieties. Duke Math. J. (to appear). | Zbl | MR
3 : Rational points on abelian varieties with values in towers of number fields. Invent. math. 18, 183-266 (1972). | Zbl | MR
4 , : Universal extensions and one-dimensional crystalline cohomology. Lecture Notes in Math., vol. 370. Berlin-Heidelberg-New York: Springer (1974). | Zbl | MR
5 , : "Canonical heights via biextensions", in Arithmetic and Geometry, vol I, Birkäuser, 195-238 (1983). | Zbl
6 , , : On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. math. 84, 1-48 (1986). | Zbl | MR
7 : Duality theorems for Neŕon models. Duke Math. J. 53 1093-1124 (1986). | Zbl | MR
8 : Elliptic Tate curves over local Γ-extensions. Math. Notes of U.S.S.R. 13 322-327 (1973). | Zbl
9 : p-adic height pairings I. Invent. math. 69, 401-409 (1982). | Zbl | MR
10 : Iwasawa L-functions of varieties over algebraic number fields. A first approach. Invent. math. 71, 251-293 (1983). | Zbl | MR
11 : p-adic height pairings II. Invent. math. 79, 329-374 (1985). | Zbl | MR





