@article{CM_1990__73_1_1_0,
author = {Van Dijk, G. and Poel, M.},
title = {The irreducible unitary $\mathrm {GL} (n-1,\mathbb {R})$-spherical representations of $\mathrm {SL} (n, \mathbb {R})$},
journal = {Compositio Mathematica},
pages = {1--30},
publisher = {Kluwer Academic Publishers},
volume = {73},
number = {1},
year = {1990},
zbl = {0723.22018},
mrnumber = {1042452},
language = {en},
url = {https://www.numdam.org/item/CM_1990__73_1_1_0/}
}
TY - JOUR
AU - Van Dijk, G.
AU - Poel, M.
TI - The irreducible unitary $\mathrm {GL} (n-1,\mathbb {R})$-spherical representations of $\mathrm {SL} (n, \mathbb {R})$
JO - Compositio Mathematica
PY - 1990
SP - 1
EP - 30
VL - 73
IS - 1
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1990__73_1_1_0/
LA - en
ID - CM_1990__73_1_1_0
ER -
%0 Journal Article
%A Van Dijk, G.
%A Poel, M.
%T The irreducible unitary $\mathrm {GL} (n-1,\mathbb {R})$-spherical representations of $\mathrm {SL} (n, \mathbb {R})$
%J Compositio Mathematica
%D 1990
%P 1-30
%V 73
%N 1
%I Kluwer Academic Publishers
%U https://www.numdam.org/item/CM_1990__73_1_1_0/
%G en
%F CM_1990__73_1_1_0
Van Dijk, G.; Poel, M. The irreducible unitary $\mathrm {GL} (n-1,\mathbb {R})$-spherical representations of $\mathrm {SL} (n, \mathbb {R})$. Compositio Mathematica, Volume 73 (1990) no. 1, pp. 1-30. https://www.numdam.org/item/CM_1990__73_1_1_0/
[Ba] : The Multiplicities of Certain K-types in Irreducible Spherical Representations of Semisimple Lie Groups. Thesis Massachusetts Institute of Technology, 1987.
[B-G] and : Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Comp. Math. 41 (1980), p. 245-285. | Zbl | MR | Numdam
[D-P] Dijk & : The Plancherel formula for the pseudo-Riemannian space SL(n, R)/GL(n-1, R). Comp. Math. 58 (1986) p. 371-397. | Zbl | MR | Numdam
[D] : Enveloping Algebras. North-Holland Publishing Company, Amsterdam/ New York/Oxford, 1977. | Zbl | MR
[Fa] : Distributions sphériques sur les espaces hyperboliques. J. Math. Pures et Appl. 58 (1979), p. 369-444. | Zbl | MR
[F-K] & : Positive definite spherical functions on a non-compact rank one symmetric space. In: Lect. Notes in Math. 739, Springer Verlag Berlin etc., 1979, p. 249-282. | Zbl | MR
[H] : A Duality for Symmetric Spaces with Applications to Group Representations I. Adv. Math. 5 (1970), p. 1-154. | Zbl | MR
[Kn] : Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton University Press, Princeton N.J., 1986. | Zbl | MR
[Ko] : On the existence and irreducibility of certain series of representations. In: I.M. Gelfand (ed.) Lie groups and their representations, Halsted Press, New-York, 1975, p. 231-329.(See also Bull. A.M.S. 75 (1969), p. 627-642.) | Zbl | MR
[MKo] : Spherical distributions on rank one symmetric spaces. Thesis University of Leiden, 1983.
[MKo-D] & : Spherical Distributions on the Pseudo-Riemannian space SL(n, R)/GL(n - 1, R). J. Funct. Anal. 68 (1986), p. 168-213. | Zbl | MR
[WKo] : Eigenspaces of the Laplace-Beltrami operator on SL(n, R)/S(GL(1) x GL(n - 1)), I and II. Ind. Math. 47 (1985), p. 99-145. | Zbl | MR
[M] : The Plancherel formula for the pseudo-Riemannian space SL(3, R)/ GL(2, R). Sibirsk Math. J. 23 (1982), p. 142-151. | Zbl | MR
[P] : Harmonic Analysis on SL(n, R)/GL(n - 1, R). Thesis University of Utrecht, 1986.
[T] : The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs. In: K.D. Bierstedt and B. Fuchsteiner (eds.), Functional Analysis: Surveys and recent results III, Elseviers Science Publishers B.V. (North Holland) (1984). | Zbl | MR
[Va] : Harmonic Analysis on Real Reductive Groups. Lecture Notes in Mathematics, No. 576, Springer-Verlag, Berlin/ Heidelberg/New York, 1977. | Zbl | MR
[Vo1] : Representations of Real Reductive Lie Groups. Birkhäuser, Boston/ Basel/ Stuttgart, 1981. | Zbl | MR
[Vo2] : The unitary dual of GL(n) over an archimedian field. Invent. Math. 83 (1985), p. 449-505. | Zbl | MR
[W] : Harmonic Analysis on Homogeneous Spaces. Dekker, New-York, 1977. | Zbl | MR
[Z] : Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. Math. 106 (1977), p. 295-308. | Zbl | MR





