[Forme non-compacte de l’invariant discret élémentaire]
We determine the non-compact form of Vishik’s elementary discrete invariant for quadrics. As an application, we obtain new restrictions on the possible values of the elementary discrete invariant by studying the action of Steenrod operations on the algebraic cycles defining the non-compact form.
On détermine la forme non-compacte de l’invariant discret élémentaire de Vishik pour quadriques. Comme application, on obtient de nouvelles restrictions sur les valeurs possibles de l’invariant discret élémentaire en étudiant l’action des opérations de Steenrod sur les cycles algébriques définissant la forme non-compacte.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2782
Keywords: Chow groups, quadratic forms, grassmannians, Steenrod operations
Mots-clés : Groupes de Chow, formes quadratiques, grassmanniennes, opérations de Steenrod
Fino, Raphaël 1
@article{BSMF_2019__147_2_289_0,
author = {Fino, Rapha\"el},
title = {Non-compact form of the {Elementary} {Discrete} {Invariant}},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {289--302},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {2},
doi = {10.24033/bsmf.2782},
mrnumber = {3982278},
zbl = {1498.14017},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2782/}
}
TY - JOUR AU - Fino, Raphaël TI - Non-compact form of the Elementary Discrete Invariant JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 289 EP - 302 VL - 147 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2782/ DO - 10.24033/bsmf.2782 LA - en ID - BSMF_2019__147_2_289_0 ER -
%0 Journal Article %A Fino, Raphaël %T Non-compact form of the Elementary Discrete Invariant %J Bulletin de la Société Mathématique de France %D 2019 %P 289-302 %V 147 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2782/ %R 10.24033/bsmf.2782 %G en %F BSMF_2019__147_2_289_0
Fino, Raphaël. Non-compact form of the Elementary Discrete Invariant. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 2, pp. 289-302. doi: 10.24033/bsmf.2782
Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 1869-1903 | MR | Zbl | DOI
The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, 56, American Mathematical Society, 2008 | MR | Zbl
Symmetric correspondences on quadrics, Manuscripta Math., Volume 155 (2018), pp. 523-537 | MR | Zbl | DOI
Splitting patterns of excellent quadratic forms, J. Reine Angew. Math., Volume 444 (1993), pp. 183-192 | MR | Zbl
Generic splitting of quadratic forms, I., Proc. London Math. Soc. (3), Volume 33 (1976), pp. 65-93 | MR | Zbl | DOI
Motives of quadrics with applications to the theory of quadratic forms, Geometric methods in the algebraic theory of quadratic forms (Lecture Notes in Math.), Volume 1835, Springer, 2004, pp. 25-101 | MR | Zbl | DOI
On the Chow groups of quadratic Grassmannians, Documenta Math. (2005), pp. 111-130 | MR | Zbl | DOI
Generic points of quadrics and Chow groups, Manuscripta Math, Volume 122 (2007), pp. 365-374 | MR | Zbl | DOI
Topics on quadratic forms, Some recent developments in algebraic -theory (ICTP Lect. Notes), Volume 23, Abdus Salam Int. Cent. Theoret. Phys., 2008, pp. 228-275 | MR | Zbl
Field of -invariant , Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II (Progr. Math), Volume 270, Birkhäuser Boston Inc., 2009, pp. 661-685 | MR | Zbl
Cité par Sources :






