Non-compact form of the Elementary Discrete Invariant
[Forme non-compacte de l’invariant discret élémentaire]
Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 2, pp. 289-302

We determine the non-compact form of Vishik’s elementary discrete invariant for quadrics. As an application, we obtain new restrictions on the possible values of the elementary discrete invariant by studying the action of Steenrod operations on the algebraic cycles defining the non-compact form.

On détermine la forme non-compacte de l’invariant discret élémentaire de Vishik pour quadriques. Comme application, on obtient de nouvelles restrictions sur les valeurs possibles de l’invariant discret élémentaire en étudiant l’action des opérations de Steenrod sur les cycles algébriques définissant la forme non-compacte.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2782
Classification : 14C25, 11E39
Keywords: Chow groups, quadratic forms, grassmannians, Steenrod operations
Mots-clés : Groupes de Chow, formes quadratiques, grassmanniennes, opérations de Steenrod

Fino, Raphaël 1

1 Instituto de Matemáticas, Ciudad Universitaria, UNAM, DF 04510, México
@article{BSMF_2019__147_2_289_0,
     author = {Fino, Rapha\"el},
     title = {Non-compact form of the {Elementary} {Discrete} {Invariant}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {289--302},
     year = {2019},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {2},
     doi = {10.24033/bsmf.2782},
     mrnumber = {3982278},
     zbl = {1498.14017},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2782/}
}
TY  - JOUR
AU  - Fino, Raphaël
TI  - Non-compact form of the Elementary Discrete Invariant
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 289
EP  - 302
VL  - 147
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2782/
DO  - 10.24033/bsmf.2782
LA  - en
ID  - BSMF_2019__147_2_289_0
ER  - 
%0 Journal Article
%A Fino, Raphaël
%T Non-compact form of the Elementary Discrete Invariant
%J Bulletin de la Société Mathématique de France
%D 2019
%P 289-302
%V 147
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2782/
%R 10.24033/bsmf.2782
%G en
%F BSMF_2019__147_2_289_0
Fino, Raphaël. Non-compact form of the Elementary Discrete Invariant. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 2, pp. 289-302. doi: 10.24033/bsmf.2782

Brosnan, P. Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 1869-1903 | MR | Zbl | DOI

Elman, R.; Karpenko, N.; Merkurjev, A. The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, 56, American Mathematical Society, 2008 | MR | Zbl

Fino, R. Symmetric correspondences on quadrics, Manuscripta Math., Volume 155 (2018), pp. 523-537 | MR | Zbl | DOI

Hurrelbrink, J.; Rehmann, U. Splitting patterns of excellent quadratic forms, J. Reine Angew. Math., Volume 444 (1993), pp. 183-192 | MR | Zbl

Knebusch, M. Generic splitting of quadratic forms, I., Proc. London Math. Soc. (3), Volume 33 (1976), pp. 65-93 | MR | Zbl | DOI

Vishik, A. Motives of quadrics with applications to the theory of quadratic forms, Geometric methods in the algebraic theory of quadratic forms (Lecture Notes in Math.), Volume 1835, Springer, 2004, pp. 25-101 | MR | Zbl | DOI

Vishik, A. On the Chow groups of quadratic Grassmannians, Documenta Math. (2005), pp. 111-130 | MR | Zbl | DOI

Vishik, A. Generic points of quadrics and Chow groups, Manuscripta Math, Volume 122 (2007), pp. 365-374 | MR | Zbl | DOI

Vishik, A. Topics on quadratic forms, Some recent developments in algebraic K -theory (ICTP Lect. Notes), Volume 23, Abdus Salam Int. Cent. Theoret. Phys., 2008, pp. 228-275 | MR | Zbl

Vishik, A. Field of u-invariant 2r+1 , Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II (Progr. Math), Volume 270, Birkhäuser Boston Inc., 2009, pp. 661-685 | MR | Zbl

Cité par Sources :