A note on crystalline liftings in the p case
[Note sur les élévations cristallines dans le cas p ]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 141-153

Let p>2 be a prime. Let ρ be a crystalline representation of Gp with distinct Hodge-Tate weights in [0,p], such that its reduction ρ¯ is upper triangular. Under certain conditions, we prove that ρ¯ has an upper triangular crystalline lift ρ such that HT(ρ)=HT(ρ). The method is based on the author’s previous work, combined with an inspiration from the work of Breuil-Herzig.

Soit p>2 un premier. Soit ρ une représentation cristalline de Gp avec des poids distincts de Hodge-Tate dans [0,p], de telle sorte que sa réduction ρ¯ soit triangulaire supérieure. Dans certaines conditions, nous prouvons que ρ¯ a une élévation cristalline triangulaire supérieure ρ telle que HT(ρ)=HT(ρ). La méthode est basée sur le travail antérieur de l’auteur, combiné avec une inspiration de l’oeuvre de Breuil-Herzig.

Reçu le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2754
Classification : 11F80, 11F33
Keywords: Kisin modules, crystalline representations, modules de Kisin, représentations cristallines
Mots-clés : WARNING

Gao, Hui 1

1 Department of Mathematics and Statistics, FIN-00014 University of Helsinki, Finland
@article{BSMF_2018__146_1_141_0,
     author = {Gao, Hui},
     title = {A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {141--153},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {1},
     doi = {10.24033/bsmf.2754},
     mrnumber = {3864872},
     zbl = {1446.11102},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2754/}
}
TY  - JOUR
AU  - Gao, Hui
TI  - A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 141
EP  - 153
VL  - 146
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2754/
DO  - 10.24033/bsmf.2754
LA  - en
ID  - BSMF_2018__146_1_141_0
ER  - 
%0 Journal Article
%A Gao, Hui
%T A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case
%J Bulletin de la Société Mathématique de France
%D 2018
%P 141-153
%V 146
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2754/
%R 10.24033/bsmf.2754
%G en
%F BSMF_2018__146_1_141_0
Gao, Hui. A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 141-153. doi: 10.24033/bsmf.2754

Breuil, Christophe; Herzig, Florian Ordinary representations of G(p) and fundamental algebraic representations, Duke Math. J., Volume 164 (2015), pp. 1271-1352 | DOI | MR | Zbl

Caruso, Xavier; Liu, Tong Some bounds for ramification of pn-torsion semi-stable representations, J. Algebra, Volume 325 (2011), pp. 70-96 | DOI | MR | Zbl

Gao, Hui Crystalline liftings and the weight part of Serre’s conjecture, Israel J. Math., Volume 221 (2017), pp. 117-164 | DOI | MR | Zbl

Gee, Toby; Geraghty, David Companion forms for unitary and symplectic groups, Duke Math. J., Volume 161 (2012), pp. 247-303 | DOI | MR | Zbl

Gee, Toby; Liu, Tong; Savitt, David The Buzzard-Diamond-Jarvis conjecture for unitary groups, J. Amer. Math. Soc., Volume 27 (2014), pp. 389-435 | DOI | MR | Zbl

Gee, Toby; Liu, Tong; Savitt, David The weight part of Serre’s conjecture for GL(2) , Forum Math. Pi, Volume 3 (2015), p. e2 | DOI | MR | Zbl

Gao, Hui; Sorensen, Claus Locally algebraic vectors in the Breuil-Herzig ordinary part, Manuscripta Math., Volume 151 (2016), pp. 113-131 | DOI | MR | Zbl

Kisin, Mark Crystalline representations and F-crystals, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser, 2006, pp. 459-496 | DOI | MR | Zbl

Levin, Brandon G-valued crystalline representations with minuscule p-adic Hodge type, Algebra Number Theory, Volume 9 (2015), pp. 1741-1792 | DOI | MR | Zbl

Liu, Tong A note on lattices in semi-stable representations, Math. Ann., Volume 346 (2010), pp. 117-138 | DOI | MR | Zbl

Cité par Sources :