[Note sur les élévations cristallines dans le cas ]
Let be a prime. Let be a crystalline representation of with distinct Hodge-Tate weights in , such that its reduction is upper triangular. Under certain conditions, we prove that has an upper triangular crystalline lift such that . The method is based on the author’s previous work, combined with an inspiration from the work of Breuil-Herzig.
Soit un premier. Soit une représentation cristalline de avec des poids distincts de Hodge-Tate dans , de telle sorte que sa réduction soit triangulaire supérieure. Dans certaines conditions, nous prouvons que a une élévation cristalline triangulaire supérieure telle que . La méthode est basée sur le travail antérieur de l’auteur, combiné avec une inspiration de l’oeuvre de Breuil-Herzig.
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2754
Keywords: Kisin modules, crystalline representations, modules de Kisin, représentations cristallines
Mots-clés : WARNING
Gao, Hui 1
@article{BSMF_2018__146_1_141_0,
author = {Gao, Hui},
title = {A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {141--153},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {1},
doi = {10.24033/bsmf.2754},
mrnumber = {3864872},
zbl = {1446.11102},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2754/}
}
TY - JOUR
AU - Gao, Hui
TI - A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case
JO - Bulletin de la Société Mathématique de France
PY - 2018
SP - 141
EP - 153
VL - 146
IS - 1
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2754/
DO - 10.24033/bsmf.2754
LA - en
ID - BSMF_2018__146_1_141_0
ER -
%0 Journal Article
%A Gao, Hui
%T A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case
%J Bulletin de la Société Mathématique de France
%D 2018
%P 141-153
%V 146
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2754/
%R 10.24033/bsmf.2754
%G en
%F BSMF_2018__146_1_141_0
Gao, Hui. A note on crystalline liftings in the $\protect \mathbb{Q}_p$ case. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 141-153. doi: 10.24033/bsmf.2754
Ordinary representations of and fundamental algebraic representations, Duke Math. J., Volume 164 (2015), pp. 1271-1352 | DOI | MR | Zbl
Some bounds for ramification of -torsion semi-stable representations, J. Algebra, Volume 325 (2011), pp. 70-96 | DOI | MR | Zbl
Crystalline liftings and the weight part of Serre’s conjecture, Israel J. Math., Volume 221 (2017), pp. 117-164 | DOI | MR | Zbl
Companion forms for unitary and symplectic groups, Duke Math. J., Volume 161 (2012), pp. 247-303 | DOI | MR | Zbl
The Buzzard-Diamond-Jarvis conjecture for unitary groups, J. Amer. Math. Soc., Volume 27 (2014), pp. 389-435 | DOI | MR | Zbl
The weight part of Serre’s conjecture for , Forum Math. Pi, Volume 3 (2015), p. e2 | DOI | MR | Zbl
Locally algebraic vectors in the Breuil-Herzig ordinary part, Manuscripta Math., Volume 151 (2016), pp. 113-131 | DOI | MR | Zbl
Crystalline representations and -crystals, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser, 2006, pp. 459-496 | DOI | MR | Zbl
-valued crystalline representations with minuscule -adic Hodge type, Algebra Number Theory, Volume 9 (2015), pp. 1741-1792 | DOI | MR | Zbl
A note on lattices in semi-stable representations, Math. Ann., Volume 346 (2010), pp. 117-138 | DOI | MR | Zbl
Cité par Sources :






