[Classes de cohomologie d'Aeppli associées à des métriques de Gauduchon sur les variétés complexes compactes]
We propose the study of a Monge-Ampère-type equation in bidegree rather than on a compact complex manifold of dimension for which we prove ellipticity and uniqueness of the solution subject to positivity and normalization restrictions. Existence will hopefully be dealt with in future work. The aim is to construct a special Gauduchon metric uniquely associated with any Aeppli cohomology class of bidegree lying in the Gauduchon cone of that we hereby introduce as a subset of the real Aeppli cohomology group of type and whose first properties we study. Two directions for applications of this new equation are envisaged: to moduli spaces of Calabi-Yau -manifolds and to a further study of the deformation properties of the Gauduchon cone beyond those given in this paper.
Nous proposons l'étude d'une équation de type Monge-Ampère en bidegré plutôt que sur une variété complexe compacte de dimension pour laquelle nous démontrons l'ellipticité et l'unicité des solutions soumises à des contraintes de positivité et de normalisation. Nous espérons que la question de l'existence pourra être traitée dans un travail ultérieur. Le but est de construire une métrique de Gauduchon spéciale associée de manière unique à une classe de cohomologie d'Aeppli quelconque de bidegré appartenant au cône de Gauduchon de que nous introduisons comme un sous-ensemble du groupe de cohomologie d'Aeppli réel de type et dont nous étudions les premières propriétés. Des applications de cette nouvelle équation sont envisagées dans deux directions : aux espaces de modules de -variétés de Calabi-Yau et à une étude des propriétés de déformations du cône de Gauduchon au-delà de celles décrites dans ce travail.
DOI : 10.24033/bsmf.2704
Keywords: Positivity in bidegree $(n-1, n-1)$, Gauduchon and sG cones, duality between the Bott-Chern and the Aeppli cohomologies, equation of the Monge-Ampére type in bidegree $(n-1, n-1)$.
Mots-clés : Positivité en bidegré $(n-1, n-1)$, cônes de Gauduchon et cône fG, dualité entre la cohomologie de Bott-Chern et la cohomologie d'Aeppli, équation du type Monge-Ampère en bidegré $(n-1, n-1)$.
@article{BSMF_2015__143_4_763_0,
author = {Popovici, Dan},
title = {Aeppli cohomology classes associated with {Gauduchon} metrics on compact complex manifolds},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {763--800},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {4},
doi = {10.24033/bsmf.2704},
mrnumber = {3450501},
zbl = {1347.53060},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2704/}
}
TY - JOUR AU - Popovici, Dan TI - Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 763 EP - 800 VL - 143 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2704/ DO - 10.24033/bsmf.2704 LA - en ID - BSMF_2015__143_4_763_0 ER -
%0 Journal Article %A Popovici, Dan %T Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds %J Bulletin de la Société Mathématique de France %D 2015 %P 763-800 %V 143 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2704/ %R 10.24033/bsmf.2704 %G en %F BSMF_2015__143_4_763_0
Popovici, Dan. Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 4, pp. 763-800. doi: 10.24033/bsmf.2704
Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409 (ISSN: 1056-3911) | MR | Zbl
Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math., Volume 159 (2004), pp. 1247-1274 (ISSN: 0003-486X) | MR | Zbl | DOI
, Complex geometry and Lie theory (Sundance, UT, 1989) (Proc. Sympos. Pure Math.), Volume 53, Amer. Math. Soc., Providence, RI, 1991, pp. 103-134 | MR | Zbl | DOI
Balanced metrics on non-Kähler Calabi-Yau threefolds, J. Differential Geom., Volume 90 (2012), pp. 81-129 http://projecteuclid.org/euclid.jdg/1335209490 (ISSN: 0022-040X) | MR | Zbl
Form-type Calabi-Yau equations, Math. Res. Lett., Volume 17 (2010), pp. 887-903 (ISSN: 1073-2780) | MR | Zbl | DOI
Form-type Calabi-Yau Equations on Kähler Manifolds of Nonnegative Orthogonal Bisectional Curvature (preprint arXiv:1010.2022 ) | MR
Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977), p. A387-A390 | MR | Zbl
Vanishing theorems on -strong Kähler manifolds with torsion, Adv. Math., Volume 237 (2013), pp. 147-164 (ISSN: 0001-8708) | MR | Zbl | DOI
On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math., Volume 71 (1960), pp. 43-76 (ISSN: 0003-486X) | MR | Zbl | DOI
, Manifolds and geometry (Pisa, 1993) (Sympos. Math., XXXVI), Cambridge Univ. Press, Cambridge, 1996, pp. 284-293 | MR | Zbl
On the existence of special metrics in complex geometry, Acta Math., Volume 149 (1982), pp. 261-295 (ISSN: 0001-5962) | MR | Zbl | DOI
Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics, Invent. math., Volume 194 (2013), pp. 515-534 (ISSN: 0020-9910) | MR | Zbl | DOI
Holomorphic Deformations of Balanced Calabi-Yau -Manifolds (preprint arXiv:1304.0331 ) | Numdam | MR | Zbl
Autour de la cohomologie de Bott-Chern (preprint arXiv:0709.3528 )
A parabolic flow of pluriclosed metrics, Int. Math. Res. Not., Volume 2010 (2010), pp. 3101-3133 (ISSN: 1073-7928) | MR | Zbl | DOI
Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. math., Volume 36 (1976), pp. 225-255 (ISSN: 0020-9910) | MR | Zbl | DOI
Hermitian Metrics, -forms and Monge-Ampère Equations (preprint arXiv:1310.6326 ) | MR
The Monge-Ampère Equation for -plurisubharmonic Functions on a Compact Kähler Manifold (3001effacer) (preprint arXiv:1305.7511 ) | MR
Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Math., 76, Cambridge Univ. Press, Cambridge, 2002, 322 pages (ISBN: 0-521-80260-1) | MR | Zbl | DOI
On the geometry of superstrings with torsion, Ph. D. Thesis , Harvard University (2006) | MR
Cité par Sources :






