Dans cet article nous donnons des bornes inférieures pour les nombres de classe de tores algébriques à multiplication complexe. Nous en déduisons des bornes inférieures pour la taille des orbites galoisiennes de points spéciaux (inconditionellement et sous l'hypothèse de Riemann généralisée).
In this paper we give lower bounds for class numbers of CM algebraic tori. We deduce lower bounds for the size of the Galois orbits of special points in Shimura varieties (unconditionally and under the Generalised Riemann Hypothesis).
@article{BSMF_2015__143_1_197_0,
author = {Ullmo, Emmanuel and Yafaev, Andrei},
title = {Nombre de classes des tores de multiplication complexe et bornes inf\'erieures pour les orbites galoisiennes de points sp\'eciaux},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {197--228},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {1},
doi = {10.24033/bsmf.2683},
zbl = {1323.11043},
mrnumber = {3323347},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2683/}
}
TY - JOUR AU - Ullmo, Emmanuel AU - Yafaev, Andrei TI - Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 197 EP - 228 VL - 143 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2683/ DO - 10.24033/bsmf.2683 LA - fr ID - BSMF_2015__143_1_197_0 ER -
%0 Journal Article %A Ullmo, Emmanuel %A Yafaev, Andrei %T Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux %J Bulletin de la Société Mathématique de France %D 2015 %P 197-228 %V 143 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2683/ %R 10.24033/bsmf.2683 %G fr %F BSMF_2015__143_1_197_0
Ullmo, Emmanuel; Yafaev, Andrei. Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 1, pp. 197-228. doi: 10.24033/bsmf.2683
Lower bounds for the height and size of the ideal class group in CM-fields, Monatsh. Math., Volume 138 (2003), pp. 85-94 (ISSN: 0026-9255) | MR | Zbl | DOI
Über eine neue Art von -Reihen, Abh. Math. Sem. Univ. Hamburg, Volume 3 (1923), pp. 89-108 | JFM | MR | DOI
Zur Theorie der -Reihen mit allgemeinen Gruppencharakteren, Abh. Math. Sem. Univ. Hamburg, Volume 8 (1931), pp. 292-306 (ISSN: 0025-5858) | MR | JFM | DOI
Néron models, Ergebnisse Math. Grenzg., 21, Springer, Berlin, 1990, 325 pages (ISBN: 3-540-50587-3) | MR | Zbl | DOI
Congruences of Néron models for tori and the Artin conductor, Ann. of Math., Volume 154 (2001), pp. 347-382 (ISSN: 0003-486X) | MR | Zbl | DOI
Équidistribution adélique des tores et équidistribution des points CM, Doc. Math., Volume extra vol. (2006), pp. 233-260 (ISSN: 1431-0635) | MR | Zbl
The structure of Galois groups of -fields, Trans. Amer. Math. Soc., Volume 283 (1984), pp. 1-32 (ISSN: 0002-9947) | MR | Zbl | DOI
Néron models and tame ramification, Compositio Math., Volume 81 (1992), pp. 291-306 (ISSN: 0010-437X) | Numdam | MR | Zbl
Subvarieties of Shimura varieties, Ann. of Math., Volume 157 (2003), pp. 621-645 (ISSN: 0003-486X) | MR | Zbl | DOI
Finite linear groups and theorems of Minkowski and Schur, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 1259-1262 (ISSN: 0002-9939) | MR | Zbl | DOI
The maximal orders of finite subgroups in , Proc. Amer. Math. Soc., Volume 125 (1997), pp. 3519-3526 (ISSN: 0002-9939) | MR | Zbl | DOI
On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 (ISSN: 0020-9910) | MR | Zbl | DOI
Haar measure and the Artin conductor, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 1691-1704 (ISSN: 0002-9947) | MR | Zbl | DOI
The André-Oort conjecture, Ann. of Math., Volume 180 (2014), pp. 867-925 (ISSN: 0003-486X) | MR | Zbl | DOI
Foundations of twisted endoscopy, Astérisque, Volume 255 (1999) (ISSN: 0303-1179) | MR | Zbl | Numdam
Algebraic number theory, Graduate Texts in Math., 110, Springer, New York, 1994, 357 pages (ISBN: 0-387-94225-4) | MR | Zbl | DOI
Arithmetic of algebraic tori, Ann. of Math., Volume 74 (1961), pp. 101-139 (ISSN: 0003-486X) | MR | Zbl | DOI
On the Tamagawa number of algebraic tori, Ann. of Math., Volume 78 (1963), pp. 47-73 (ISSN: 0003-486X) | MR | Zbl | DOI
Rational points of definable sets and results of André-Oort-Manin-Mumford type, Int. Math. Res. Not., Volume 2009 (2009), pp. 2476-2507 (ISSN: 1073-7928) | MR | Zbl | DOI
O-minimality and the André-Oort conjecture for , Ann. of Math., Volume 173 (2011), pp. 1779-1840 (ISSN: 0003-486X) | MR | Zbl | DOI
The rational points of a definable set, Duke Math. J., Volume 133 (2006), pp. 591-616 (ISSN: 0012-7094) | MR | Zbl | DOI
Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994, 614 pages (ISBN: 0-12-558180-7) | MR | Zbl
Division fields of abelian varieties with complex multiplication, Mém. Soc. Math. France, Volume 2 (1980/81), pp. 75-94 (ISSN: 0583-8665) | MR | Zbl | Numdam | DOI
Corps locaux, Hermann, Paris, 1968, 245 pages | MR
On some class number relations of algebraic tori, Michigan Math. J., Volume 24 (1977), pp. 365-377 (ISSN: 0026-2285) | MR | Zbl
Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Amer. Math. Soc., Volume 25 (2012), pp. 1091-1117 (ISSN: 0894-0347) | MR | Zbl | DOI
Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture, Ann. of Math., Volume 180 (2014), pp. 823-865 (ISSN: 0003-486X) | MR | Zbl | DOI
Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, Amer. Math. Soc., Providence, RI, 1998, 218 pages (ISBN: 0-8218-0905-9) | MR | Zbl
The scheme of connected components of the Néron model of an algebraic torus, J. reine angew. Math., Volume 437 (1993), pp. 167-179 (ISSN: 0075-4102) | MR | Zbl | DOI
A conjecture of Yves André, Duke Math. J., Volume 132 (2005), pp. 393-407 | MR
Cité par Sources :






