[Sur les représentations de Speh -adiques]
This note contains simple proofs of some known results (unitarity, character formula) on Speh representations of a group where is a local non Archimedean division algebra of any characteristic.
Cette note contient des preuves simples de certains faits connus (unitarisabilité, formule des caractères) concernant les représentations de Speh d'un groupe , où est une algèbre à division locale non-archimédienne de caractéristique quelconque.
Keywords: Representations of $p$-adic groups, Langlands program, unitary representations.
Mots-clés : Représentations des groupes $p$-adiques, programme de Langlands, représentations unitaires.
@article{BSMF_2014__142_2_255_0,
author = {Badulescu, Alexandru Ioan},
title = {On $p$-adic {Speh} representations},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {255--267},
year = {2014},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {142},
number = {2},
language = {en},
url = {https://www.numdam.org/item/BSMF_2014__142_2_255_0/}
}
TY - JOUR AU - Badulescu, Alexandru Ioan TI - On $p$-adic Speh representations JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 255 EP - 267 VL - 142 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/item/BSMF_2014__142_2_255_0/ LA - en ID - BSMF_2014__142_2_255_0 ER -
Badulescu, Alexandru Ioan. On $p$-adic Speh representations. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 2, pp. 255-267. https://www.numdam.org/item/BSMF_2014__142_2_255_0/
Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longeur finie d'un groupe réductif -adique, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 2179-2189 ; erratum: Trans. Amer. Math. Soc. 348 (1996), 4687–4690
Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 695-747 (ISSN: 0012-9593) | DOI | Zbl | MR
Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu, Volume 6 (2007), pp. 349-379 (ISSN: 1474-7480) | DOI | MR
Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math., Volume 172 (2008), pp. 383-438 (ISSN: 0020-9910) | DOI | MR
Sur le dual unitaire de , Amer. J. Math., Volume 132 (2010), pp. 1365-1396 (ISSN: 0002-9327) | DOI | MR
Sur une conjecture de Tadić, Glas. Mat. Ser. III, Volume 39(59) (2004), pp. 49-54 (ISSN: 0017-095X) | DOI | MR
, Functional analysis IX (Various Publ. Ser. (Aarhus)), Volume 48, Univ. Aarhus, Aarhus, 2007, pp. 9-15 | MR
Unitary dual of at Archimedean places and global Jacquet-Langlands correspondence, Compos. Math., Volume 146 (2010), pp. 1115-1164 (ISSN: 0010-437X) | DOI | MR
, Lie group representations, II (College Park, Md., 1982/1983) (Lecture Notes in Math.), Volume 1041, Springer, 1984, pp. 50-102 | MR | Zbl | DOI
Characters of Speh representations and Lewis Caroll identity, Represent. Theory, Volume 12 (2008), pp. 447-452 (ISSN: 1088-4165) | DOI | MR
, Representations of reductive groups over a local field (Travaux en Cours), Hermann, 1984, pp. 33-117 | MR
Sur l'involution de Zelevinski, J. reine angew. Math., Volume 372 (1986), pp. 136-177 (ISSN: 0075-4102) | DOI | MR
Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. I.H.É.S., Volume 85 (1997), pp. 97-191 (ISSN: 0073-8301) | Numdam | MR
Proof of the Tadić conjecture (U0) on the unitary dual of , J. reine angew. Math., Volume 626 (2009), pp. 187-203 (ISSN: 0075-4102) | DOI | MR
Unitary representations of with nontrivial -cohomology, Invent. Math., Volume 71 (1983), pp. 443-465 (ISSN: 0020-9910) | DOI | MR
Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 335-382 (ISSN: 0012-9593) | Numdam | MR
Topology of unitary dual of non-Archimedean , Duke Math. J., Volume 55 (1987), pp. 385-422 (ISSN: 0012-7094) | DOI | MR
Induced representations of for -adic division algebras , J. reine angew. Math., Volume 405 (1990), pp. 48-77 (ISSN: 0075-4102) | DOI | MR
An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.), Volume 28 (1993), pp. 215-252 (ISSN: 0273-0979) | DOI | Zbl | MR
On characters of irreducible unitary representations of general linear groups, Abh. Math. Sem. Univ. Hamburg, Volume 65 (1995), pp. 341-363 (ISSN: 0025-5858) | DOI | MR
Representation theory of over a -adic division algebra and unitarity in the Jacquet-Langlands correspondence, Pacific J. Math., Volume 223 (2006), pp. 167-200 (ISSN: 0030-8730) | DOI | MR
, Automorphic forms and -functions II. Local aspects (Contemp. Math.), Volume 489, Amer. Math. Soc., 2009, pp. 285-313 | DOI | MR
The unitary dual of over an Archimedean field, Invent. Math., Volume 83 (1986), pp. 449-505 (ISSN: 0020-9910) | DOI | MR
Induced representations of reductive -adic groups. II. On irreducible representations of , Ann. Sci. École Norm. Sup., Volume 13 (1980), pp. 165-210 (ISSN: 0012-9593) | Numdam | MR






