@phdthesis{BJHTUP11_2003__0633__P0_0,
author = {Banica, Manuela Valeria},
title = {Equation de {Schr\"odinger} en milieu inhomog\`ene},
series = {Th\`eses d'Orsay},
publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
number = {633},
year = {2003},
language = {fr},
url = {https://www.numdam.org/item/BJHTUP11_2003__0633__P0_0/}
}
Banica, Manuela Valeria. Equation de Schrödinger en milieu inhomogène. Thèses d'Orsay, no. 633 (2003), 106 p. https://www.numdam.org/item/BJHTUP11_2003__0633__P0_0/
[1] , Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no. 6, 749-768. | MR | Zbl
[2] , and , Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène, Asymptotic Analysis 5 (1992), no. 6, 481-494. | MR | Zbl
[3] , , Equations d'ondes quasi-linéaires et estimations de Strichartz, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 9, 803-806. | MR | Zbl
[4] , Contre-exemples aux inégalités de Strichartz pour des équations d'évolution à coefficients singuliers, mémoire de DEA, Université de Paris Sud (1999).
[5] , Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I.Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156. | MR | Zbl | DOI
[6] , , Nonlinear Schrödinger evolution equation, Nonlinear Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681. | MR | Zbl | DOI
[7] , , , Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, to appear in Amer. J. Math.. | MR | Zbl
[8] , , , An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), no. 2-3, 323-335. | MR | Zbl | DOI
[9] , , , Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl | DOI
[10] , , , Inégalités de Sogge bilinéaires et équation de Schrödinger non-linéaire, Séminaire Equations aux Dérivées partielles, Ecole Polytechnique, Palaiseau, mars 2003. | MR | Numdam | Zbl
[11] , , Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal. 164 (2002), no. 1, 39-72. | MR | Zbl | DOI
[12] , An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996).
[13] , Equation de Schrödinger non-linéaire en dimension deux, Proc. Roy. Soc. Edinburg, 84A, 327-346. | MR | Zbl | DOI
[14] , , The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math. 61 (1988), no. 4, 477-494. | MR | Zbl | DOI
[15] , , , Asymptotic, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, to appear in Amer. J. Math.. | MR | Zbl
[16] , , , Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769-860. | MR | Zbl | DOI
[17] , Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations 21 (1996), no. 1-2, 163-178. | MR | Zbl
[18] , Introduction aux equations de Schrödinger non linéaires, Editions Paris XI (1994).
[19] , , On a class of Schrödinger equations. I. The Cauchy problem, a general case, J. Funct. Anal. 32 (1979), no. 1, 1-32. | MR | Zbl
[20] , , The global Cauchy problem for the nonlinear Schrödinger equation, Ann. I. H. P. Analyse non-linéaire 2 (1985), no. 4, 309-327. | MR | Zbl | Numdam
[21] , , Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Analysis 133 (1995), no. 1, 50-68. | MR | Zbl | DOI
[22] , On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. | MR | Zbl | DOI
[23] , Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J. 1 (1990), 693-726. | Zbl | MR
[24] , , A Parametrix for the Nonstationary Schrödinger Equation, Differential Operators and Spectral Theory ; Amer. Math. Soc. Transl. Ser. 2, 189, (1999), 139-148. | MR | Zbl
[25] , , Dispersive smoothing for Schrödinger equations, Math. Res. Lett. 3 (1996), no. 1, 77-91. | MR | Zbl | DOI
[26] , On nonlinear Schrödinger equations, Ann. I. H. P. Physique Théorique 46 (1987), no. 1, 113-129. | MR | Zbl | Numdam
[27] , A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203. | MR | Zbl
[28] , , Endpoint Strichartz Estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. | MR | Zbl | DOI
[29] , , , Smoothing Effects and Local Existence Theory for the Generalized Nonlinear Schrödinger Equations, Invent. Math. 134 (1998), no. 3, 489-545. | MR | Zbl | DOI
[30] , , , On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617-633. | MR | Zbl | DOI
[31] , , Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. | MR | Zbl | DOI
[32] , , On the local well-posedness on the Benjamin-Ono equation, to appear in I. M. R. N.. | MR | Zbl
[33] , Uniqueness of positive solutions of in , Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266. | MR | Zbl
[34] , Non linear optic and supercritical wave equation. Hommage à Pascal Laubin, Bull. Soc. Roy. Sci. Liège 70 (2001), no. 4-6, 267-306 (2002). | MR | Zbl
[35] , The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145. | MR | Zbl | Numdam | DOI
[36] , The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincare Anal. Non Linéaire 1 (1984), no. 4, 223-283. | MR | Zbl | Numdam | DOI
[37] , Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl | DOI
[38] , Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), no. 2, 427-454. | MR | Zbl | DOI
[39] , , Blow-up dynamic and upper bound on blow-up rate for critical non linear Schrödinger equation, Université de Cergy-Pontoise, prépublication (2003). | MR | Zbl
[40] , , On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, prépublication (2003).
[41] , Exemples d'instabilités pour des équations d'ondes non linéaires [d'après G. Lebeau], Séminaire Bourbaki, 55ème année, 2002-2003, no. 911. | MR | Zbl | Numdam
[42] , Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations, Duke Math. J. 91 (1998), no. 2, 393-408. | MR | Zbl | DOI
[43] , , Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), no. 2, 531-540. | MR | Zbl | DOI
[44] , , Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl
[45] , , Methods of Modern Mathematical Physics, IV : Analysis of Operators, Academic Press, New York (1978). | MR
[46] , A parametrix construction for wave equation with coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 797-835. | MR | Zbl | Numdam | DOI
[47] , , On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett. 1 (1994), no. 6, 729-737. | MR | Zbl | DOI
[48] , , On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 (1995), no. 4, 879-916. | MR | Zbl | DOI
[49] , Fourier integrals in classical analysis, Cambridge tracts in mathematics (1993). | MR | Zbl
[50] , Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43-65. | MR | Zbl | DOI
[51] , , Strichartz Estimates for a Schrödinger Operator with nonsmooth Coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372. | MR | Zbl | DOI
[52] , Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. | MR | Zbl | DOI
[53] , , The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Math. Sciences, 139, Springer-Verlag, New York (1992). | MR | Zbl
[54] , Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), no. 2, 349-376. | MR | Zbl | DOI
[55] , A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 177-178. | MR | Zbl | DOI
[56] , On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 780-783. | MR | Zbl
[57] , Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576. | MR | Zbl | DOI
[58] , On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986), no. 5, 545-565. | MR | Zbl | DOI
[59] , Modulation stability of ground states of nonlinear Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491. | MR | Zbl | DOI
[60] , Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), no. 3, 415-426. | MR | Zbl | DOI
[61] , Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.
[1] , , , Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène, Asymptot. Anal. 5 (1992), no. 6, 481-494. | MR | Zbl
[2] , , , Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., to appear. | MR | Zbl
[3] , Analytic functions of absolutely convergent generalized trigonometric sums, Duke Math. J. 3 (1937), 682-688. | MR | Zbl | DOI
[4] , , Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal. 164 (2002), no. 1, 30-72. | MR | Zbl | DOI
[5] , , , Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769-860. | MR | Zbl | DOI
[6] , Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations 21 (1996), no. 1-2, 163-178. | MR | Zbl
[7] , and , Les anneaux normés commutatifs, Monographies internationales de mathématiques modernes, Gauthier-Villars Paris (1964). | Zbl
[8] , , Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Anal. 133 (1995), no. 1, 50-68. | MR | Zbl | DOI
[9] , , Dispersive smoothing for Schrödinger equations, Math. Res. Lett. 3 (1996), no. 1, 77-91. | MR | Zbl | DOI
[10] , , , Smoothing Effects and Local Existence Theory for the Generalized Nonlinear Schrödinger Equations, Invent. Math. 134 (1998), no. 3, 489-545. | MR | Zbl | DOI
[11] , , Hill's equation, Interscience tracts in pure and applies mathematics (1966). | MR | Zbl
[12] , A theorem on absolutely convergent trigonometric series, J. Math. Phys. 16 (1938), 191-195. | Zbl | JFM | DOI
[13] and , Strichartz Estimates for a Schrödinger Operator with nonsmooth Coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372. | MR | Zbl | DOI
[14] , Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. | MR | Zbl | DOI
[15] , A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 177-178. | MR | Zbl | DOI
[1] , Fourier transformation restriction phenomena for certain lattice subsets and application to the nonlinear evolution equations I. Schrödinger equations, Geom. and Funct. Anal. 3 (1993), no. 2, 107-156. | MR | Zbl | DOI
[2] , , , Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, to appear in Amer. J. Math.. | MR | Zbl
[3] , , , An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), no. 2-3, 323-335. | MR | Zbl | DOI
[4] , , , Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl | DOI
[5] , , , Inégalités de Sogge bilinéaires et équation de Schrödinger non-linéaire, Séminaire Equations aux Dérivées partielles, École Polytechnique, Palaiseau, mars 2003. | MR | Zbl
[6] , , The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Analysis 14 (1990), no. 10, 807-836. | MR | Zbl | DOI
[7] , , , Asymptotic, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, to appear in Amer. J. Math.. | MR | Zbl
[8] , , The global Cauchy problem for the nonlinear Schrödinger equation, Ann. I. H. P. Ann. non-lin. 2 (1985), no. 4, 309-327. | MR | Zbl | Numdam
[9] , The theory of spherical and ellipsoidal harmonics, Cambridge University Press (1955). | MR | JFM
[10] , On nonlinear Schrödinger equations, Ann. I. H. P. Phys. Th. 46 (1987), no. 1, 113-129. | MR | Zbl | Numdam
[11] , , , On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617-633. | MR | Zbl | DOI
[12] , , On the local well-posedness on the Benjamin-Ono equation, to appear in I. M. R. N.. | MR | Zbl
[13] , Optique non linéaire et ondes sur critiques, Séminaire Equations aux Dérivées partielles, 1999-2000, Exp. No. IV, 13 pp., Sémin. Équ. Dériv. Partielles, Ecole Polytechnique, Palaiseau (2000). | MR | Zbl
[14] , Exemples d'instabilités pour des équations d'ondes non linéaires [d'après G. Lebeau], Séminaire Bourbaki, 55ème année, 2002-2003, no. 911. | MR | Zbl | Numdam
[15] , Fourier integrals in classical analysis, Cambridge tracts in mathematics (1993). | MR | Zbl
[16] , Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43-65. | MR | Zbl | DOI
[17] , , The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Math. Sciences, 139, Springer-Verlag, New York (1992). | MR | Zbl
[18] , Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. | MR | Zbl | DOI
[19] , Existence of solutions for Schrödinger evolution equation, Comm. Math. Phys. 110 (1987), no. 3, 415-426. | MR | Zbl | DOI
[1] , Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no. 6, 749-768. | MR | Zbl
[2] , , Nonlinear Schrödinger evolution equation, Nonlinear Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681. | MR | Zbl | DOI
[3] , , , Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl | DOI
[4] , An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996).
[5] , , Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9) 80 (2001), no. 1, 1-49. | MR | Zbl | DOI
[6] , , On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1-71. | MR | Zbl
[7] , On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. | MR | Zbl | DOI
[8] , On nonlinear Schrödinger equations, Ann. I. H. P. Physique Théorique 46 (1987), no. 1, 113-129. | MR | Zbl | Numdam
[9] , A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203. | MR | Zbl
[10] , Uniqueness of positive solutions of in , Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266. | MR | Zbl
[11] , The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145. | MR | Zbl | Numdam | DOI
[12] , The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. | MR | Zbl | Numdam | DOI
[13] , , Nemytskij operators in Sobolev spaces, Arch. Rat. Mech. Anal. 51 (1973), 347-370. | MR | Zbl | DOI
[14] , Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl | DOI
[15] , Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), no. 2, 427-454. | MR | Zbl | DOI
[16] , Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 5, 553-565 | MR | Zbl | DOI | Numdam
[17] , , Blow-up dynamic and upper bound on blow-up rate for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003). | MR | Zbl
[18] , , On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
[19] , On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 3 (1959), no. 13, 115-162. | MR | Zbl | Numdam
[20] , , Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), no. 2, 531-540. | MR | Zbl | DOI
[21] , , Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl
[22] , , Methods of modern mathematical Physics IV : Analysis of Operators, Academic Press, New York (1978). | MR
[23] , , The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Math. Sciences, 139, Springer-Verlag, New York (1992). | MR | Zbl
[24] , On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 780-783. | MR | Zbl
[25] , Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576. | MR | Zbl | DOI
[26] , On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986), no. 5, 545-565. | MR | Zbl | DOI
[27] , Modulation stability of ground states of nonlinear Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491. | MR | Zbl | DOI
[28] , Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.





