We prove that the twisted Alexander polynomial of a torus knot with an irreducible -representation is locally constant. In the case of a torus knot, we can give an explicit formula for the twisted Alexander polynomial and deduce Hirasawa-Murasugi’s formula for the total twisted Alexander polynomial. We also give examples which address a mis-statement in a paper of Silver and Williams.
Kitano, Teruaki 1 ; Morifuji, Takayuki 2
@article{ASNSP_2012_5_11_2_395_0,
author = {Kitano, Teruaki and Morifuji, Takayuki},
title = {Twisted {Alexander} polynomials for irreducible $SL(2,\protect \mathbb{C})$-representations of torus knots},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {395--406},
year = {2012},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 11},
number = {2},
zbl = {1255.57014},
mrnumber = {3011996},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2012_5_11_2_395_0/}
}
TY - JOUR
AU - Kitano, Teruaki
AU - Morifuji, Takayuki
TI - Twisted Alexander polynomials for irreducible $SL(2,\protect \mathbb{C})$-representations of torus knots
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2012
SP - 395
EP - 406
VL - 11
IS - 2
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2012_5_11_2_395_0/
LA - en
ID - ASNSP_2012_5_11_2_395_0
ER -
%0 Journal Article
%A Kitano, Teruaki
%A Morifuji, Takayuki
%T Twisted Alexander polynomials for irreducible $SL(2,\protect \mathbb{C})$-representations of torus knots
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 395-406
%V 11
%N 2
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2012_5_11_2_395_0/
%G en
%F ASNSP_2012_5_11_2_395_0
Kitano, Teruaki; Morifuji, Takayuki. Twisted Alexander polynomials for irreducible $SL(2,\protect \mathbb{C})$-representations of torus knots. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 395-406. https://www.numdam.org/item/ASNSP_2012_5_11_2_395_0/
[1] R. H. Crowell and R. H. Fox, “Introduction to Knot Theory”, Grad. Texts Math., Vol. 57, Springer-Verlag, 1977. | Zbl | MR
[2] M. Hirasawa and K. Murasugi, Evaluations for the twisted Alexander polynomials of -bridge knots at , J. Knot Theory Ramifications 19 (2010), 1355–1400. | Zbl | MR
[3] D. Johnson, “A Geometric Form of Casson’s Invariant and its Connection to Reidemeister Torsion”, unpublished Lecture Notes.
[4] P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635–661. | Zbl | MR
[5] T. Kitano, Reidemeister torsion of Seifert fibered spaces for -representations, Tokyo J. Math. 17 (1994), 59–75. | Zbl | MR
[6] T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431–442. | Zbl | MR
[7] T. Kitano and T. Morifuji, Divisibility of twisted Alexander polynomials and fibered knots, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 179–186. | Zbl | EuDML | Numdam | MR
[8] T. Kitayama, Normalization of twisted Alexander invariants, arXiv:0705.2371. | MR
[9] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361–380. | Zbl | MR
[10] T. Morifuji, Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math. 132 (2008), 439–453. | Zbl | MR
[11] D. Silver and S. Williams, Dynamics of twisted Alexander invariants, Topology Appl. 156 (2009), 2795–2811. | Zbl | MR
[12] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241–256. | Zbl | MR





