We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian -representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree for a fibered knot of genus .
Kitano, Teruaki 1 ; Morifuji, Takayuki 2
@article{ASNSP_2005_5_4_1_179_0,
author = {Kitano, Teruaki and Morifuji, Takayuki},
title = {Divisibility of twisted {Alexander} polynomials and fibered knots},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {179--186},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {1},
mrnumber = {2165406},
zbl = {1117.57004},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/}
}
TY - JOUR AU - Kitano, Teruaki AU - Morifuji, Takayuki TI - Divisibility of twisted Alexander polynomials and fibered knots JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 179 EP - 186 VL - 4 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/ LA - en ID - ASNSP_2005_5_4_1_179_0 ER -
%0 Journal Article %A Kitano, Teruaki %A Morifuji, Takayuki %T Divisibility of twisted Alexander polynomials and fibered knots %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 179-186 %V 4 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/ %G en %F ASNSP_2005_5_4_1_179_0
Kitano, Teruaki; Morifuji, Takayuki. Divisibility of twisted Alexander polynomials and fibered knots. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 179-186. https://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/
[1] , Fibred knots and twisted Alexander invariants, Trans. Amer. Math. Soc. 355 (2003), 4187-4200. | Zbl | MR
[2] , Introduction aux polynomes d'un nœud, Enseign. Math. 13 (1968), 187-194. | Zbl
[3] , and , Reidemeister torsion, twisted Alexander polynomial and fibered knots, Comment. Math. Helv. 80 (2005), 51-61. | Zbl | MR
[4] and , Twisted Alexander polynomial for -representations and fibered knots, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 97-101. | Zbl | MR
[5] and , Twisted topological invariants associated with representations, In: “Topics in Knot Theory”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Academic Publishers, Dordrecht, 1993, 211-227. | Zbl | MR
[6] and , Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661. | Zbl | MR
[7] and , Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999), 663-671. | Zbl | MR
[8] , Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442. | Zbl | MR
[9] , and , Twisted Alexander polynomial and surjectivity of a group homomorphism, preprint. | MR
[10] , http://www.math.kobe-u.ac.jp/HOME/kodama/knot.html
[11] , Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380. | Zbl | MR
[12] , A twisted invariant for finitely presentable groups, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 143-145. | Zbl | MR
[13] , Twisted Alexander polynomial for the braid group, Bull. Austral. Math. Soc. 64 (2001), 1-13. | Zbl | MR
[14] , “Knot Groups”, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. | Zbl | MR
[15] , Nonabelian representations of -bridge knot groups, Quarterly J. Math. Oxford (2) 35 (1984), 191-208. | Zbl | MR
[16] , Twisted Alexander polynomial for the Lawrence-Krammer representation, Bull. Austral. Math. Soc. 70 (2004), 67-71. | Zbl | MR
[17] , Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256. | Zbl | MR





