We prove that if is a minimizer of the Mumford-Shah functional in an open set of , and if and are such that is close enough to a minimal cone of type (a plane), (three half planes meeting at with 120 angles) or (cone over the 6 edges of a regular tetrahedron centered at ) in terms of Hausdorff distance in , then is equivalent to the minimal cone in where is a universal constant.
Lemenant, Antoine 1
@article{ASNSP_2011_5_10_3_561_0,
author = {Lemenant, Antoine},
title = {Regularity of the singular set for {Mumford-Shah} minimizers in $\protect \mathbb{R}^3$ near a minimal cone},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {561--609},
year = {2011},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 10},
number = {3},
mrnumber = {2905379},
zbl = {1239.49062},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2011_5_10_3_561_0/}
}
TY - JOUR
AU - Lemenant, Antoine
TI - Regularity of the singular set for Mumford-Shah minimizers in $\protect \mathbb{R}^3$ near a minimal cone
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2011
SP - 561
EP - 609
VL - 10
IS - 3
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2011_5_10_3_561_0/
LA - en
ID - ASNSP_2011_5_10_3_561_0
ER -
%0 Journal Article
%A Lemenant, Antoine
%T Regularity of the singular set for Mumford-Shah minimizers in $\protect \mathbb{R}^3$ near a minimal cone
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 561-609
%V 10
%N 3
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2011_5_10_3_561_0/
%G en
%F ASNSP_2011_5_10_3_561_0
Lemenant, Antoine. Regularity of the singular set for Mumford-Shah minimizers in $\protect \mathbb{R}^3$ near a minimal cone. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 561-609. https://www.numdam.org/item/ASNSP_2011_5_10_3_561_0/
[1] L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 39–62. | MR | Zbl | EuDML | Numdam
[2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. | MR | Zbl
[3] A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré Anal. Non Linéaire (4) 13 (1996), 485–528. | MR | Zbl | EuDML | Numdam
[4] G. David, -regularity for two-dimensional almost-minimal sets in , J. Geom. Anal. 20 (2010), 837–954. | MR | Zbl
[5] G. David, -arcs for minimizers of the Mumford-Shah functional, SIAM J. Appl. Math. (3) 56 (1996), 783–888. | MR | Zbl
[6] G. David, Singular sets of minimizers for the Mumford-Shah functional, Vol. 233 of “Progress in Mathematics”, Birkhäuser Verlag, Basel, 2005. | MR | Zbl
[7] G. David, Hölder regularity of two-dimensional almost-minimal sets in , Ann. Fac. Sci. Toulouse Math. (1) 18 (2009), 65–246. | MR | Zbl | EuDML | Numdam
[8] G. David, T. De Pauw and T. Toro, A generalization of Reifenberg’s theorem in , Geom. Funct. Anal. (4) 18 (2008), 1168–1235. | MR | Zbl
[9] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set., Arch. Ration. Mech. Anal. 108 (1989), 195–218. | MR | Zbl
[10] H. Federer, “Geometric Measure Theory”, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. | MR | Zbl
[11] H. Koch, G. Leoni and M. Morini, On optimal regularity of free boundary problems and a conjecture of De Giorgi, Comm. Pure Appl. Math. (8) 58 (2005), 1051–1076. | MR | Zbl
[12] A. Lemenant, “Sur la régularité des minimiseurs de Mumford-Shah en dimension et supérieure”, Thesis Université Paris Sud XI, Orsay, 2008.
[13] A. Lemenant, On the homogeneity of global minimizers for the Mumford-Shah functional when is a smooth cone, Rend. Sem. Mat. Univ. Padova 122 (2009). | MR | Zbl | EuDML | Numdam
[14] A. Lemenant, Energy improvement for energy minimizing functions in the complement of generalized Reifenberg-flat sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9 (2010), 1–34. | MR | Zbl | Numdam
[15] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577–685. | MR | Zbl
[16] J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. 103 (1976), 489–539. | MR | Zbl






