Ambrosio, Luigi  ; Fusco, Nicola 1 ; Pallara, Diego 
@article{ASNSP_1997_4_24_1_39_0,
author = {Ambrosio, Luigi and Fusco, Nicola and Pallara, Diego},
title = {Partial regularity of free discontinuity sets, {II}},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {39--62},
year = {1997},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 24},
number = {1},
mrnumber = {1475772},
zbl = {0896.49024},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1997_4_24_1_39_0/}
}
TY - JOUR AU - Ambrosio, Luigi AU - Fusco, Nicola AU - Pallara, Diego TI - Partial regularity of free discontinuity sets, II JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 39 EP - 62 VL - 24 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1997_4_24_1_39_0/ LA - en ID - ASNSP_1997_4_24_1_39_0 ER -
%0 Journal Article %A Ambrosio, Luigi %A Fusco, Nicola %A Pallara, Diego %T Partial regularity of free discontinuity sets, II %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 39-62 %V 24 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1997_4_24_1_39_0/ %G en %F ASNSP_1997_4_24_1_39_0
Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego. Partial regularity of free discontinuity sets, II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 24 (1997) no. 1, pp. 39-62. https://www.numdam.org/item/ASNSP_1997_4_24_1_39_0/
[1] , A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. B 3 (1989), 857-881. | Zbl | MR
[2] , Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. | Zbl | MR
[3] , Variational problems in SBV, Acta App. Math. 17 (1989), 1-40. | Zbl | MR
[4] , A new proof of SBV compactness theorem, Calc. Var. 3 (1995), 127-137. | Zbl | MR
[5] - , Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. ???. | Zbl | Numdam
[6] - , Visual Reconstruction, M.I.T. Press, 1987. | MR
[7] , On the regularity of edges in the Mumford-Shah model for image segmentation, Ann. Inst. H. Poincaré, to appear.
[8] - , Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Analysis TMA 15 (1990), 661-677. | Zbl | MR
[9] - - - , Euler Conditions for a Minimum Problem with Free Discontinuity Set, Preprint Dip. di Matematica, 8 Lecce, 1988.
[10] - - , Plastic free discontinuities and special bounded hessian, C.R. Acad. Sci. Paris Sér. I Math. 314 (1992), 595-600. | Zbl | MR
[11] - - , A variational method in image segmentation: existence and approximation results, Acta Math. 168 (1992), 89-151. | Zbl | MR
[12] - , On the singular set of minimizers of the Mumford-Shah functional, J. Math. Pures Appl. to appear. | Zbl
[13] , C1-arcs for the minimizers of the Mumford- Shah functional, SIAM J. Appl. Math. 56 (1996), 783-888. | Zbl | MR
[14] , Free Discontinuity Problems in Calculus of Variations, in: Frontiers in pure and applied Mathematics, a collection of papers dedicated to J.L. Lions on the occasion of his 60th birthday, R. Dautray ed., North Holland, 1991. | Zbl | MR
[15] - , Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. | Zbl | MR
[16] - - , Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal. 108 (1989), 195-218. | Zbl | MR
[17] , Minimal surfaces and functions with bounded variation, Birkhäuser, Boston, 1984. | Zbl | MR
[18] , Variational problems with free interfaces, Calc. Var. 1 (1993), 149-168. | Zbl | MR
[19] - , Variational models in image segmentation, Birkhäuser, Bostom, 1994.
[20] - , Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 17 (1989), 577-685. | Zbl | MR
[21] , Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 1983. | Zbl | MR
[22] , Weakly differentiable functions, Springer Verlag, Berlin, 1989. | Zbl | MR






