Using a calibration method we prove that, if is a closed regular hypersurface and if the function is discontinuous along and regular outside, then the function which solves
@article{ASNSP_2002_5_1_3_603_0,
author = {Morini, Massimiliano},
title = {Global calibrations for the non-homogeneous {Mumford-Shah} functional},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {603--648},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {3},
mrnumber = {1990674},
zbl = {1170.49308},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/}
}
TY - JOUR AU - Morini, Massimiliano TI - Global calibrations for the non-homogeneous Mumford-Shah functional JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 603 EP - 648 VL - 1 IS - 3 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/ LA - en ID - ASNSP_2002_5_1_3_603_0 ER -
%0 Journal Article %A Morini, Massimiliano %T Global calibrations for the non-homogeneous Mumford-Shah functional %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 603-648 %V 1 %N 3 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/ %G en %F ASNSP_2002_5_1_3_603_0
Morini, Massimiliano. Global calibrations for the non-homogeneous Mumford-Shah functional. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 3, pp. 603-648. https://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/
[1] - - , The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 249-254. | Zbl | MR
[2] - - G., The calibration method for the Mumford-Shah functional and free discontinuity problems, Preprint SISSA, Trieste, 2001. | Zbl | MR
[3] , Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995), 191-246. | Zbl | MR
[4] , A compactness theorem for a new class of variational problems, Boll. Un. Mat. It. 3-B (1989), 857-881. | Zbl | MR
[5] - - , “Functions of Bounded Variation and Free-Discontinuity Problems”, Oxford University Press, Oxford, 2000. | Zbl | MR
[6] , On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Anal. Non Linéaire. 13 (1996), 485-528. | Zbl | MR | Numdam
[7] - , Minimizing movements of the Mumford-Shah energy, Discrete Contin. Dynam. Systems 3 (1997), 153-174. | Zbl | MR
[8] - - , Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity set, J. Math. Pures Appl. 79 (2000), 141-162. | Zbl | MR
[9] - , Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. | Zbl | MR
[10] - , Shape Analysis via oriented distance functions, J. Funct. Anal. 123 (1994), 129-201. | Zbl | MR
[11] - , On explicit solutions for the problem of Mumford and Shah, Comm. Contemp. Math. 1 (1999), 201-212. | Zbl | MR
[12] , Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 145-193. | Zbl | MR | Numdam | EuDML
[13] , “Majorations en norme du maximum de la résolvante du laplacien dans un polygone. Nonlinear partial differential equations and their applications”, Collège de France Seminar, Vol. XII (Paris, 1991-1993), 87-96, Pitman Res. | Zbl | MR
[14] , “Elliptic Problems in Nonsmooth Domains”, Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. | Zbl | MR
[15] , “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. | Zbl | MR
[16] , Local calibrations for minimizers of the Mumford-Shah functional with a triple junction, Preprint SISSA, Trieste, 2001. | Zbl | MR
[17] - , Functional depending on curvatures with constraints, Rend. Sem. Mat. Univ. Padova 104 (2000), 173-199. | Zbl | MR | Numdam | EuDML
[18] - , Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set, To appear on Ann. Inst. H. Poincaré, Anal. non linéaire. | Zbl | MR | Numdam | EuDML
[19] - , Boundary detection by minimizing functionals, I, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (San Francisco, 1985).
[20] - , Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577-685. | Zbl | MR
[21] , Limit theorems for a variational problem arising in computer vision, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 1-49. | Zbl | MR | Numdam | EuDML





