@article{ASNSP_1998_4_27_1_145_0,
author = {Gobbino, Massimo},
title = {Gradient flow for the one-dimensional {Mumford-Shah} functional},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {145--193},
year = {1998},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 27},
number = {1},
mrnumber = {1658873},
zbl = {0931.49010},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/}
}
TY - JOUR AU - Gobbino, Massimo TI - Gradient flow for the one-dimensional Mumford-Shah functional JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 145 EP - 193 VL - 27 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/ LA - en ID - ASNSP_1998_4_27_1_145_0 ER -
%0 Journal Article %A Gobbino, Massimo %T Gradient flow for the one-dimensional Mumford-Shah functional %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 145-193 %V 27 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/ %G en %F ASNSP_1998_4_27_1_145_0
Gobbino, Massimo. Gradient flow for the one-dimensional Mumford-Shah functional. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 27 (1998) no. 1, pp. 145-193. https://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/
[ 1 ] , A Compactness Theorem for a New Class of Functions of Bounded Variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881. | Zbl | MR
[2] , Existence Theory for a New Class of Variational Problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. | Zbl | MR
[3] , Free Discontinuity Problems and Special Functions with Bounded Variation, Proceedings ECM2 Budapest 1996, Progress in Mathematics 168 (1998), 15-35. | Zbl | MR
[4] - , Energies in SB V and Variational Models in Fracture Mechanics, in Homogenization and Applications to Material Sciences, (D. Cioranescu, A. Damlamian, P. Donato eds.), Gakuto, Gakkotosho, Tokio, Japan, 1997, p. 1-22. | Zbl | MR
[5] - , Approximation of Functionals Depending on Jumps by Elliptic Functionals via r-Convergence, Comm. Pure Appl. Math. 43 (1990), 999-1036. | Zbl | MR
[6] , On the Approximation of Free Discontinuity Problems, Boll. Un. Mat. Ital. 6-B (1992), 105-123. | Zbl | MR
[7] - , Nonlocal Approximation of the Mumford-Shah Functional, Calc. Var. Partial Differential Equations 5 (1997), 293-322. | Zbl | MR
[8] , "Opérateures Maximaux Monotones et Semigroups de Contraction dans les Espaces de Hilbert", North-Holland Mathematics Studies, n. 5 (1973). | Zbl | MR
[9] , Analyse Fonctionnelle: Theorie et Applications, Masson, 1987. | Zbl | MR
[10] , Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math. 55 (1995), 827-863. | Zbl | MR
[11] - , Discrete Approximation of the Mumford-Shah Functional in Dimension two, RAIRO Modèl. Math. Anal. Numèr., to appear | Zbl | MR | Numdam
[12] - , Minimizing Movements of the Mumford and Shah Energy, Discrete and Continuous Dynamical Systems, vol. 3, n. 2 (1997), 153-174. | Zbl | MR
[13] , "An Introduction to Γ-convergence", Birkhäuser, Boston, 1993. | Zbl
[14] - - , Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal. 108 (1989), 195-218. | Zbl | MR
[15] - , Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. | Zbl | MR
[16] - - , Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 73 (1982), 6-14. | Zbl | MR
[17] - , "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. | Zbl | MR
[18] , Finite Difference Approximation of the Mumford-Shah Functional, Comm. Pure Appl. Math. 51 (1998), 197-228. | Zbl | MR
[19] , The phenomenon of rupture and flow in solids, Phil. Trans. Royal Soc. London Ser. A 221 (1920), 163-198.
[20] , Convergence of the Allen-Cahn Equation to Brakke's Motion by Mean Curvature, J. Differential Geom. 38 (1993), 417-461. | Zbl | MR
[21] - , Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problem, Comm. Pure Appl. Math. 17 (1989), 577-685. | Zbl | MR
[22] , "Weakly Differentiable Functions", Springer, Berlin, 1989. | Zbl | MR





