@article{ASENS_1983_4_16_1_91_0,
author = {Usui, Sampei},
title = {Variation of mixed {Hodge} structures arising from family of logarithmic deformations},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {91--107},
year = {1983},
publisher = {Elsevier},
volume = {Ser. 4, 16},
number = {1},
doi = {10.24033/asens.1441},
zbl = {0516.14006},
mrnumber = {719764},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.1441/}
}
TY - JOUR AU - Usui, Sampei TI - Variation of mixed Hodge structures arising from family of logarithmic deformations JO - Annales scientifiques de l'École Normale Supérieure PY - 1983 SP - 91 EP - 107 VL - 16 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1441/ DO - 10.24033/asens.1441 LA - en ID - ASENS_1983_4_16_1_91_0 ER -
%0 Journal Article %A Usui, Sampei %T Variation of mixed Hodge structures arising from family of logarithmic deformations %J Annales scientifiques de l'École Normale Supérieure %D 1983 %P 91-107 %V 16 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.24033/asens.1441/ %R 10.24033/asens.1441 %G en %F ASENS_1983_4_16_1_91_0
Usui, Sampei. Variation of mixed Hodge structures arising from family of logarithmic deformations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 16 (1983) no. 1, pp. 91-107. doi: 10.24033/asens.1441
[1] , Surfaces with K² = pg = 1 and Their Period Mapping. (Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lect. Notes in Math., No. 732, Springer Verlag, pp. 1-29). | Zbl | MR
[2] , The Moduli and the Global Period Mapping of Surfaces with K² = pg = 1 : A Counterexample to the Global Torelli Problem. (Comp. Math., Vol. 41-3, 1980, pp. 401-414). | Zbl | MR | Numdam
[3] , Equations différentielles à points singuliers réguliers. (Lect. Notes in Math., No. 163, 1970, Springer Verlag). | Zbl | MR
[4] , Théorie de Hodge, II (Publ. Math. I.H.E.S., Vol. 40, 1971, pp. 5-58). | Zbl | MR | Numdam
[5] , Travaux de Griffiths. (Sém. Bourbaki Exp., Vol. 376, 1969/1970, Lect. Notes in Math., No. 180, Springer Verlag). | Zbl | Numdam
[6] and , Recent Developements in Hodge theory : A Discussion of Techniques and Results. (Proc. Internat. Coll., Bombay, Oxford Press, 1971, pp. 31-127). | Zbl
[7] and , On the Deformations of De Rham Cohomology Classes with Respect to Parameters. (J. Math. Kyoto Univ., Vol. 8-2, 1968, pp. 199-213). | Zbl | MR
[8] , On Deformations of Compactified Manifolds. (Math. Ann., Vol. 235, 1978, pp. 247-265). | Zbl | MR
[9] , On the Uniformization of Complements of Discriminant Loci. (A.M.S. Summer Institute, 1975).
[10] , Surfaces of General Type with pg = 1 and (K, K) = 1.I. (Ann. scient. Ec. Norm. Sup., 4e sér., Vol. 13-1, 1980, pp. 1-21). | Zbl | MR | Numdam
[11] , Period Map of Surfaces with pg = c²1 = 1 and K Ample. (Mem. Fac. Sc. Kochi Univ. (Math.), Vol. 2, 1981, pp. 37-73). | Zbl | MR
[12] , Effect of Automorphisms on Variation of Hodge Structure. (J. Math. Kyoto Univ., Vol. 21-4, 1981). | Zbl | MR
[13] , Torelli Theorem for Surfaces with pg = c21 = 1 and K Ample and with Certain Type of Automorphism. (Comp. Math. Vol. 45-3, 1982, pp. 293-314). | Zbl | MR | Numdam
[14] , Topologie algébrique et théorie des faisceaux. (Publ. Inst. Math. Univ. Strasbourg, Vol. XIII, Hermann, Paris, 1958). | Zbl | MR
[15] and , Metode Algebrice in Teorica Globală a Spatiilor Complexe. (Editura Academici Republicii Socialiste Româna, Bucuresti, 1974, English Edition, John Wiley & Sons, London, New York, Sydney, Toronto, 1976).
[16] , and , A Theorem of Local Torelli Type. (Math. Ann., 1977). | Zbl | MR
[17] , On a Generalization of Complete Intersections. (J. Math. Kyoto Univ., Vol. 15-3, 1975, pp. 619-646). | Zbl | MR
[18] , Periods of Integrals on Algebraic Manifolds I, II, III. (Amer. J. Math., Vol. 90, 1968, pp. 568-626 ; idem pp. 805-865 ; Publ. Math. I.H.E.S., Vol. 38, 1970, pp. 125-180). | Zbl | Numdam
[19] , A Simply Connected Surface of General Type for which the Local Torelli Theorem does not Hold. (C.R. Acad. Bulgare des Sci., Vol. 30-3, 1977, pp. 323-325 (Russian)). | Zbl | MR
Cité par Sources :






