@article{CM_1982__45_3_293_0,
author = {Usui, Sampei},
title = {Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism},
journal = {Compositio Mathematica},
pages = {293--314},
year = {1982},
publisher = {Martinus Nijhoff Publishers},
volume = {45},
number = {3},
mrnumber = {656607},
zbl = {0507.14028},
language = {en},
url = {https://www.numdam.org/item/CM_1982__45_3_293_0/}
}
TY - JOUR AU - Usui, Sampei TI - Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism JO - Compositio Mathematica PY - 1982 SP - 293 EP - 314 VL - 45 IS - 3 PB - Martinus Nijhoff Publishers UR - https://www.numdam.org/item/CM_1982__45_3_293_0/ LA - en ID - CM_1982__45_3_293_0 ER -
%0 Journal Article %A Usui, Sampei %T Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism %J Compositio Mathematica %D 1982 %P 293-314 %V 45 %N 3 %I Martinus Nijhoff Publishers %U https://www.numdam.org/item/CM_1982__45_3_293_0/ %G en %F CM_1982__45_3_293_0
Usui, Sampei. Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism. Compositio Mathematica, Tome 45 (1982) no. 3, pp. 293-314. https://www.numdam.org/item/CM_1982__45_3_293_0/
[1] and : On the Torelli problems for Kählerian K-3 surfaces. Ann, scient. Éc. Norm. Sup. 4e sér. 8-2 (1975) 235-274. | Zbl | MR | Numdam
[2] : Surfaces with K2 = pg = 1 and their period mapping. Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lecture Notes in Math. No 732, Springer Verlag, 1-29. | Zbl
[3] and ; Supplement to "On the inverse of Monoidal Transformation", Publ. R.I.M.S. Kyoto Univ. 7 (1972) 637-644. | Zbl | MR
[4] : Global moduli for surfaces of general type. Invent. Math. 43 (1977) 233-282. | Zbl | MR
[5] : Periods of integrals on algebraic manifolds I, II, III: Amer. J. Math. 90 (1968) 568-626; 805-865; Publ. Math. I.H.E.S. 38 (1970) 125-180. | Zbl | Numdam
[6] : A simply connected surface of general type for which the local Torelli theorem does not hold (Russian). Cont. Ren. Acad. Bulgare des Sci. 30-3 (1977) 323-325. | Zbl | MR
[7] and : Torelli theorems for Kähler K3 surfaces, Comp. Math. 42-2 (1981) 145-186. | Zbl | MR | Numdam
[8] and : A Torelli theorem for algebraic surfaces of type K-3, Izv. Akad. Nauk. 35 (1971) 530-572. | MR
[9] : Surfaces of general type with pg = 1 and (K, K) = 1. I, Ann. scient. Éc. Norm. Sup. 4e sér. 13-1 (1980) 1-21. | Zbl | Numdam
[10] : Period map of surfaces with pg = c21= 1 and K ample. Mem. Fac. Sci. Kochi Univ. (Math.) 2 (1981) 37-73. | Zbl | MR
[11] : Effect of automorphisms on variation of Hodge structure. J. Math. Kyoto Univ. 21-4 (1981). | Zbl | MR
[12] : The moduli and the global period mapping of surfaces with K2 = pg = 1: A counterexample to the global Torelli problem, Comp. Math. 41-3 (1980) 401-414. | Zbl | MR | Numdam






