@article{AIHPC_2000__17_3_307_0,
author = {Ara\'ujo, V{\'\i}tor},
title = {Attractors and time averages for random maps},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {307--369},
year = {2000},
publisher = {Gauthier-Villars},
volume = {17},
number = {3},
mrnumber = {1771137},
zbl = {0974.37036},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2000__17_3_307_0/}
}
Araújo, Vítor. Attractors and time averages for random maps. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 3, pp. 307-369. https://www.numdam.org/item/AIHPC_2000__17_3_307_0/
[1] , , , SRB measures for partially hyperbolic diffeomorphisms, the expanding case, in preparation.
[2] , , An attractor for certain Hénon maps, Preprint E.T.H., Zurich.
[3] , , Partially hyperbolic dynamical systems, Izv. Akad. Nauk. SSSR 1 (1974) 170-212. | Zbl | MR
[4] , , Connexions heterocliniques et genericité d'une infinité de puits ou de sources, Preprint PUC-Rio, 1998.
[5] , , , Genericity of Newhouse's phenomenon vs. dominated splitting, in preparation.
[6] , , SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Preprint IMPA, 1997. | MR
[7] , Infinitely many coexisting strange attractors, Annales de l'Institut Henri Poincaré - Analyse Non-Linéaire (accepted for publication). | Zbl | Numdam
[8] , , , Normal hyperbolicity and robust transitivity, Preprint PUC-Rio, 1997.
[9] , , Random iterations of rational functions, Ergodic Theory Dynamical Systems 11 (4) (1991) 687-708. | Zbl | MR
[10] , , Diffeomorphisms with infinitely many strange attractors, J. Complexity 6 (1990) 409-416. | Zbl | MR
[11] , , , Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos 6 ( 1 ) (1996) 15-31. | Zbl | MR
[12] , , , Stably ergodic diffeomorphisms, Annals of Math. 140 (1994) 295-329. | Zbl | MR
[13] , Introduction to Measure and Probability, Addison-Wesley, Cambridge, MA, 1953. | Zbl | MR
[14] , Contributions to the stability conjecture, Topology 17 (4) (1978) 383-396. | Zbl | MR
[15] , Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. | Zbl | MR
[16] , Non-density of axion A(a) on S2, Proc. AMS Symp. Pure Math. 14 (1970) 191-202. | Zbl
[17] , Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9- 18. | Zbl | MR
[18] , The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES 50 (1979) 101-151. | Zbl | MR | Numdam
[19] , Ergodic Theory, Cambridge Studies in Advanced Math., No. 2, Cambridge, 1983. | Zbl | MR
[20] , A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque (1998). | Zbl | MR | Numdam
[21] , , Geometric Theory of Dynamical Systems, Springer, New York, 1982. | Zbl | MR
[22] , , Hyperbolic and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Math., No. 35, Cambridge, 1993. | Zbl | MR
[23] , , High dimension diffeomorphisms displaying infinitely many periodic attractors, Annals of Math. 140 (1994) 207-250. | Zbl | MR
[24] , , Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynamical Systems 2 (1982) 417-438. | Zbl | MR
[25] , Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynamical Systems 15 (1995) 735-757. | Zbl | MR
[26] , Global Stability of Dynamical Systems, Springer, New York, 1987. | Zbl | MR
[27] , Partially hyperbolic fixed points, Topology 10 (1971) 137-151. | Zbl | MR
[28] , Heteroclinic attractors: time averages and moduli of topological conjugacy, Bol. Soc. Bras. Mat. 25 (1) (1994) 107-120. | Zbl | MR
[29] , , How often do simple dynamical processes have infinitely many coexisting sinks, Comm. Math. Phys. 106 (1986) 635-657. | Zbl | MR
[30] , Global attractors and bifurcations, in: Broer H.W., van Gils S.A., Hoveijn I., Takens F. (Eds.), Nonlinear Dynamical Systems and Chaos Progress in Nonlinear Partial Differential Equations and Applications (PNLDE No. 19), Birkhäuser, 1996, pp. 299-324. | Zbl | MR
[31] , Dynamics: A probabilistic and geometric perspective, in: Proceedings ICM, Documenta Mathematica, 1998. | Zbl | MR





