@article{AIHPC_1991__8_1_79_0,
author = {Benci, V. and Fortunato, D. and Giannoni, F.},
title = {On the existence of multiple geodesics in static space-times},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {79--102},
year = {1991},
publisher = {Gauthier-Villars},
volume = {8},
number = {1},
mrnumber = {1094653},
zbl = {0716.53057},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1991__8_1_79_0/}
}
TY - JOUR AU - Benci, V. AU - Fortunato, D. AU - Giannoni, F. TI - On the existence of multiple geodesics in static space-times JO - Annales de l'I.H.P. Analyse non linéaire PY - 1991 SP - 79 EP - 102 VL - 8 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1991__8_1_79_0/ LA - en ID - AIHPC_1991__8_1_79_0 ER -
%0 Journal Article %A Benci, V. %A Fortunato, D. %A Giannoni, F. %T On the existence of multiple geodesics in static space-times %J Annales de l'I.H.P. Analyse non linéaire %D 1991 %P 79-102 %V 8 %N 1 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1991__8_1_79_0/ %G en %F AIHPC_1991__8_1_79_0
Benci, V.; Fortunato, D.; Giannoni, F. On the existence of multiple geodesics in static space-times. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 1, pp. 79-102. https://www.numdam.org/item/AIHPC_1991__8_1_79_0/
[1] , The Topology of Functional Manifolds and the Calculus of Variations in the Large, Russian Math. Surv., Vol. 25, 1970, p. 51-117. | Zbl | MR
[2] , Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Inst. Fourier, Vol. 132, 1963, p. 105-190. | Zbl | MR | Numdam
[3] , , and , Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity,Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 981-1012. | Zbl | MR
[4] and , Global Lorentzian Geometry, M. Dekker, Pure Appl. Math., Vol. 67, 1981. | Zbl | MR
[5] , Periodic Solutions of Lagrangian Systems on Compact Manifold, J. Diff. Eq., Vol. 63, 1986, pp. 135-161. | Zbl | MR
[6] and , Existence of Geodesics for the Lorentz Metric of a Stationary Gravitational Field, Ann. Inst. H. Poincaré, Anal. non linéaire, Vol. 7, 1990, pp. 27-35. | Zbl | MR | Numdam
[7] and , Periodic Trajectories for the Lorentz Metric of a Static Gravitational Field, Proc. on "Variational Problems", Paris, June 1988 (to appear). | Zbl | MR
[8] and , On the Existence of Infinitely Many Geodesics on Space-Time Manifolds, preprint, Dip. Mat. Univ. Bari, 1989. | MR
[9] , and , On the Existence of Geodesics in Static Lorentz Manifolds with Nonsmooth Boundary, preprint. Ist. Mat. Appl. Univ. Pisa.
[10] , On p-convex Sets and Geodesics, J. Diff. Eq., Vol. 75, 1988, pp. 118-157. | Zbl | MR
[11] , Closed Timelike Geodesics, Trans. Am. Math. Soc., Vol. 285, 1984, pp. 379-388. | Zbl | MR
[12] , Compact Lorentzian Manifolds Without Closed Nonspacelike Geodesics, Proc. Am. Math. Soc., Vol. 98, 1986, pp. 119-124. | Zbl | MR
[13] , Periodic Trajectories for a Class of Lorentz Metrics of a Time-Dependent Gravitational Field, preprint, Dip. Mat. Univ. Bari, 1989. | MR
[14] , Periodic Trajectories in Static Space-Times, preprint, Dip. Mat. Univ. Bari, 1989. | MR
[15] and , The Large Scale Structure of Space Time, Cambridge Univ. Press, 1973. | Zbl | MR
[16] , Morse Theory, Ann. Math. Studies, Vol. 51, Princeton Univ. Press, 1963. | Zbl
[17] , The Embedding Problem for Riemannian Manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. | Zbl | MR
[18] , Semi-Riemannian Geometry with Applications to relativity, Academic Press Inc., New York-London, 1983. | Zbl
[19] , Critical Point Theory and the Minimax Principle, Global Anal., Proc. Sym. "Pure Math.", Vol. 15, Amer. Math. Soc., 1970, pp. 185-202. | Zbl | MR
[20] , Morse Theory on Hilbert Manifolds, Topology, Vol. 22, 1963, pp. 299- 340. | Zbl | MR
[21] , Techniques of Differential Topology in Relativity, Conf. Board Math. Sci., Vol. 7, S.I.A.M., Philadelphia, 1972. | Zbl | MR
[22] , Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Series, Am. Math. Soc., Vol. 65, 1986. | Zbl | MR
[23] , Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. | Zbl | MR
[24] , Global Connectivity by Time-Like Geodesics, Z. Natureforsch, Vol. 22 a, 1970, pp. 1356-1360. | Zbl | MR
[25] , Homologie singulière des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425- 505. | Zbl | MR
[26] , Existence of Closed Time-Like Geodesics in Lorentz Spaces, Proc. Am. Math. Soc., Vol. 76, 1979, pp. 145-147. | Zbl
[27] , A Morse Theory for Geodesics on a Lorentz Manifold, Topology, Vol. 14, 1975, pp. 69-90. | Zbl | MR
[28] and , The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., Vol. 11, 1979, pp. 633-644. | Zbl | MR






