@article{AIHPC_1990__7_1_27_0,
author = {Benci, Vieri and Fortunato, Donato},
title = {Existence of geodesics for the {Lorentz} metric of a stationary gravitational field},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {27--35},
year = {1990},
publisher = {Gauthier-Villars},
volume = {7},
number = {1},
mrnumber = {1046082},
zbl = {0697.58011},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1990__7_1_27_0/}
}
TY - JOUR AU - Benci, Vieri AU - Fortunato, Donato TI - Existence of geodesics for the Lorentz metric of a stationary gravitational field JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 27 EP - 35 VL - 7 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1990__7_1_27_0/ LA - en ID - AIHPC_1990__7_1_27_0 ER -
%0 Journal Article %A Benci, Vieri %A Fortunato, Donato %T Existence of geodesics for the Lorentz metric of a stationary gravitational field %J Annales de l'I.H.P. Analyse non linéaire %D 1990 %P 27-35 %V 7 %N 1 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1990__7_1_27_0/ %G en %F AIHPC_1990__7_1_27_0
Benci, Vieri; Fortunato, Donato. Existence of geodesics for the Lorentz metric of a stationary gravitational field. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 1, pp. 27-35. https://www.numdam.org/item/AIHPC_1990__7_1_27_0/
[1] , Essais de géométrie riemannienne hyperbolique globale. Application à la Relativité Générale, Ann. Inst. Fourier, Vol. 132, 1963, pp. 105-190. | Zbl | MR | Numdam
[2] , and , Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity, Journal of nonlinear Anal. T.M.A., Vol. 7, 1983, pp.981-1012. | Zbl | MR
[3] and , The Large scale Structure of Space-Time, Cambridge University Press, 1973. | Zbl | MR
[4] and , Théorie des champs, Mir, 1970.
[5] , Techniques of Differential Topology in Relativity, Conference board of Math. Sc., Vol. 7, S.I.A.M., 1972. | Zbl | MR
[6] , Some Mini-Max Theorems and Applications to Nonlinear Partial Differential Equations, Nonlinear Analysis, CESARI, KANNAN, WEINBERGER Ed., Academic Press, 1978, pp. 161-177. | Zbl | MR
[7] , Mini-Max Methods in Critical Point Theory with Applications to Differential Equations, Conf. board Math. Sc. A.M.S., Vol. 65, 1986. | Zbl
[8] , Global Connectivity by Time Like Geodesic, Zs. f. Naturfor., Vol. 22 a, 1967, pp. 1256-1360. | Zbl | MR






