@article{AIHPC_1989__S6__259_0,
author = {Fournier, G. and Willem, M.},
title = {Multiple solutions of the forced double pendulum equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {259--281},
publisher = {Gauthier-Villars},
volume = {S6},
year = {1989},
mrnumber = {1204018},
zbl = {0683.70022},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1989__S6__259_0/}
}
TY - JOUR AU - Fournier, G. AU - Willem, M. TI - Multiple solutions of the forced double pendulum equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 1989 SP - 259 EP - 281 VL - S6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1989__S6__259_0/ LA - en ID - AIHPC_1989__S6__259_0 ER -
Fournier, G.; Willem, M. Multiple solutions of the forced double pendulum equation. Annales de l'I.H.P. Analyse non linéaire, Volume S6 (1989), pp. 259-281. https://www.numdam.org/item/AIHPC_1989__S6__259_0/
[1] , A variant of the Lusternick-Schnirelman Theory, Indiana J. Math 22, (1972) 65-74. | Zbl | MR
[2] , A Simplicial Approach to the Fixed Point Index, Fixed Point Theory, Sherbrooke, Quebec 1980, Edited by E. Fadell and G. Fournier, Springer-Verlag 886. 73-102 | Zbl | MR
[3] -, On Periodic Solutions of Forced Pendulum-like Equations, J.Differential Equations 60(1985), 381-395. | Zbl | MR
[4] -, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J.Differential Equations 52(1984), 264-287. | Zbl | MR
[5] , Some Minimax Principles and their Applications in nonlinear Elliptic Equations, Journal d'analyse mathématiques 37( 1980), 248-275. | Zbl | MR
[6] , The Lusternik-Schnirelman theory on Banach manifolds, Topology 5(1966), 115-132. | Zbl | MR
[7] , and , Periodic Solutions of Lagrahgian Systems with Bounded Potential, Preprint. | MR





