@article{AIHPB_1996__32_6_725_0,
author = {Cramer, M. and R\"uschendorf, L.},
title = {Convergence of a branching type recursion},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {725--741},
year = {1996},
publisher = {Gauthier-Villars},
volume = {32},
number = {6},
mrnumber = {1422308},
zbl = {0869.60018},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1996__32_6_725_0/}
}
TY - JOUR AU - Cramer, M. AU - Rüschendorf, L. TI - Convergence of a branching type recursion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1996 SP - 725 EP - 741 VL - 32 IS - 6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1996__32_6_725_0/ LA - en ID - AIHPB_1996__32_6_725_0 ER -
Cramer, M.; Rüschendorf, L. Convergence of a branching type recursion. Annales de l'I.H.P. Probabilités et statistiques, Tome 32 (1996) no. 6, pp. 725-741. https://www.numdam.org/item/AIHPB_1996__32_6_725_0/
[1] , Random recursive constructions of self-similar fractal measures. The non-compact case. Prob. Th. Rel. Fields, Vol. 88, 1991, pp. 497-520. | Zbl | MR
[2] and , Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 64, 1983, pp. 275-301. | Zbl | MR
[3] , Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré, Vol. 26, 1990, pp. 261-286. | Zbl | MR | Numdam
[4] and , Generalized potlach and smoothing processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 55, 1981, pp. 165-195. | Zbl | MR
[5] and , Sur certaines martingales de Benoit Mandelbrot. Adv. Math., Vol. 22, 1976, pp. 131-145. | Zbl | MR
[6] , Evolution of Random Search Trees. Wiley, New York, 1992. | Zbl | MR
[7] , Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris, Vol. 278, 1974, pp. 289-292. | Zbl | MR
[8] , Probability Metrics and the Stability of Stochastic Models. Wiley, New York, 1991. | Zbl | MR
[9] and , Probability metrics and recursive algorithms. 1991, To appear in Advances Appl. Prob., 1995. | Zbl | MR





