Let be an elliptic curve defined over with conductor and denote by the modular parametrization:
In this paper, we are concerned with the critical and ramification points of . In particular, we explain how we can obtain a more or less experimental study of these points.
Soit une courbe elliptique définie sur de conducteur et soit son revêtement modulaire :
Dans cet article, nous nous intéressons aux points critiques et aux points de ramification de . En particulier, nous expliquons comment donner une étude plus ou moins expérimentale de ces points.
@article{JTNB_2005__17_1_109_0,
author = {Delaunay, Christophe},
title = {Critical and ramification points of the modular parametrization of an elliptic curve},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {109--124},
year = {2005},
publisher = {Universit\'e Bordeaux 1},
volume = {17},
number = {1},
doi = {10.5802/jtnb.480},
zbl = {1082.11033},
mrnumber = {2152214},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.480/}
}
TY - JOUR AU - Delaunay, Christophe TI - Critical and ramification points of the modular parametrization of an elliptic curve JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 109 EP - 124 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.480/ DO - 10.5802/jtnb.480 LA - en ID - JTNB_2005__17_1_109_0 ER -
%0 Journal Article %A Delaunay, Christophe %T Critical and ramification points of the modular parametrization of an elliptic curve %J Journal de théorie des nombres de Bordeaux %D 2005 %P 109-124 %V 17 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.480/ %R 10.5802/jtnb.480 %G en %F JTNB_2005__17_1_109_0
Delaunay, Christophe. Critical and ramification points of the modular parametrization of an elliptic curve. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 109-124. doi: 10.5802/jtnb.480
[1] A.O.L. Atkin, J. Lehner, Hecke operators on . Math. Ann. 185 (1970), 134–160. | Zbl
[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available at http://www.math.u-psud.fr/~belabas/pari/
[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). | Zbl | MR
[4] B. Birch, Heegner points of elliptic curves. Symp. Math. Inst. Alta. Math. 15 (1975), 441–445. | Zbl | MR
[5] H. Cohen, A course in computational algebraic number theory. Graduate Texts in Math. 138, Springer-Verlag, New-York, 4-th corrected printing (2000). | Zbl | MR
[6] J. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, (1997) second edition. | Zbl | MR
[7] J. Cremona, Elliptic curve data for conductors up to 25000. Available at http://www.maths.nott.ac.uk/personal/jec/ftp/data/INDEX.html
[8] C. Delaunay, Computing modular degrees using -functions. Journ. theo. nomb. Bord. 15 (3) (2003), 673–682. | Zbl | MR | Numdam
[9] B. Gross, Heegner points on . Modular Forms, ed. R. A. Ramkin, (1984), 87–105. | Zbl | MR
[10] B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320. | Zbl | MR
[11] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61. | Zbl | MR
[12] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Math. Soc of Japan 11, Princeton university Press (1971). | Zbl | MR
[13] N. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Inv. Math. 98 (1988), 113–146. | Zbl | MR
[14] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572. | Zbl | MR
[15] M. Watkins, Computing the modular degree. Exp. Math. 11 (4) (2002), 487–502. | Zbl | MR
[16] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no.3, 443–551. | Zbl | MR
[17] D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 (3) (1985), 372–384. | Zbl | MR
Cité par Sources :





